求bmp图象文件的低通滤波程序(100分)

  • 主题发起人 主题发起人 elite
  • 开始时间 开始时间
你要求的是不是对图象进行平滑处理,
比较简单的算法是将原始图象的每一个象素由附近象素的平均值代替,
如可以使用3*3的 Block,每个中心象素的值由区域的平均值来代替。
代码可以自己写吧...

你可以试一下 Fxtools这个控件,包含很多图象处理效果。
可以从深度历险download
 
下面代码得自UDDF, 不知是否有用? 据说速度很快
unit GBlur2;

interface

uses Windows, Graphics;

type
PRGBTriple = ^TRGBTriple;
TRGBTriple = packed record
b: byte; //easier to type than rgbtBlue...
g: byte;
r: byte;
end;

PRow = ^TRow;
TRow = array[0..1000000] of TRGBTriple;

PPRows = ^TPRows;
TPRows = array[0..1000000] of PRow;


const MaxKernelSize = 100;

type

TKernelSize = 1..MaxKernelSize;

TKernel = record
Size: TKernelSize;
Weights: array[-MaxKernelSize..MaxKernelSize] of single;
end;
//the idea is that when using a TKernel you ignore the Weights
//except for Weights in the range -Size..Size.

procedure GBlur(theBitmap: TBitmap; radius: double);

implementation

uses SysUtils;

procedure MakeGaussianKernel(var K: TKernel; radius: double;
MaxData, DataGranularity: double);
//makes K into a gaussian kernel with standard deviation = radius.
//for the current application you set MaxData = 255,
//DataGranularity = 1. Now the procedure sets the value of
//K.Size so that when we use K we will ignore the Weights
//that are so small they can't possibly matter. (Small Size
//is good because the execution time is going to be
//propertional to K.Size.)
var j: integer; temp, delta: double; KernelSize: TKernelSize;
begin
for j:= Low(K.Weights) to High(K.Weights) do
begin
temp:= j/radius;
K.Weights[j]:= exp(- temp*temp/2);
end;

//now divide by constant so sum(Weights) = 1:

temp:= 0;
for j:= Low(K.Weights) to High(K.Weights) do
temp:= temp + K.Weights[j];
for j:= Low(K.Weights) to High(K.Weights) do
K.Weights[j]:= K.Weights[j] / temp;


//now discard (or rather mark as ignorable by setting Size)
//the entries that are too small to matter -
//this is important, otherwise a blur with a small radius
//will take as long as with a large radius...
KernelSize:= MaxKernelSize;
delta:= DataGranularity / (2*MaxData);
temp:= 0;
while (temp < delta) and (KernelSize > 1) do
begin
temp:= temp + 2 * K.Weights[KernelSize];
dec(KernelSize);
end;

K.Size:= KernelSize;

//now just to be correct go back and jiggle again so the
//sum of the entries we'll be using is exactly 1:

temp:= 0;
for j:= -K.Size to K.Size do
temp:= temp + K.Weights[j];
for j:= -K.Size to K.Size do
K.Weights[j]:= K.Weights[j] / temp;

end;

function TrimInt(Lower, Upper, theInteger: integer): integer;
begin
if (theInteger <= Upper) and (theInteger >= Lower) then
result:= theInteger
else
if theInteger > Upper then
result:= Upper
else
result:= Lower;
end;

function TrimReal(Lower, Upper: integer; x: double): integer;
begin
if (x < upper) and (x >= lower) then
result:= trunc(x)
else
if x > Upper then
result:= Upper
else
result:= Lower;
end;

procedure BlurRow(var theRow: array of TRGBTriple; K: TKernel; P: PRow);
var j, n, LocalRow: integer; tr, tg, tb: double; //tempRed, etc
w: double;
begin

for j:= 0 to High(theRow) do
begin
tb:= 0;
tg:= 0;
tr:= 0;
for n:= -K.Size to K.Size do
begin
w:= K.Weights[n];

//the TrimInt keeps us from running off the edge of the row...
with theRow[TrimInt(0, High(theRow), j - n)] do
begin
tb:= tb + w * b;
tg:= tg + w * g;
tr:= tr + w * r;
end;
end;
with P[j] do
begin
b:= TrimReal(0, 255, tb);
g:= TrimReal(0, 255, tg);
r:= TrimReal(0, 255, tr);
end;
end;

Move(P[0], theRow[0], (High(theRow) + 1) * Sizeof(TRGBTriple));
end;

procedure GBlur(theBitmap: TBitmap; radius: double);
var Row, Col: integer; theRows: PPRows; K: TKernel; ACol: PRow; P:PRow;
begin
if (theBitmap.HandleType >< bmDIB) or (theBitmap.PixelFormat >< pf24Bit) then
raise exception.Create('GBlur only works for 24-bit bitmaps');


MakeGaussianKernel(K, radius, 255, 1);
GetMem(theRows, theBitmap.Height * SizeOf(PRow));
GetMem(ACol, theBitmap.Height * SizeOf(TRGBTriple));

//record the location of the bitmap data:
for Row:= 0 to theBitmap.Height - 1 do
theRows[Row]:= theBitmap.Scanline[Row];

//blur each row:
P:= AllocMem(theBitmap.Width*SizeOf(TRGBTriple));
for Row:= 0 to theBitmap.Height - 1 do
BlurRow(Slice(theRows[Row]^, theBitmap.Width), K, P);

//now blur each column
ReAllocMem(P, theBitmap.Height*SizeOf(TRGBTriple));
for Col:= 0 to theBitmap.Width - 1 do
begin
//- first read the column into a TRow:
for Row:= 0 to theBitmap.Height - 1 do
ACol[Row]:= theRows[Row][Col];


BlurRow(Slice(ACol^, theBitmap.Height), K, P);

//now put that row, um, column back into the data:
for Row:= 0 to theBitmap.Height - 1 do
theRows[Row][Col]:= ACol[Row];
end;

FreeMem(theRows);
FreeMem(ACol);
ReAllocMem(P, 0);
end;

end.
 
jiangtao说的对。但邻域平滑和中值平滑我都试过了,效果不大理想。
 
可以使用卷积公式
 
eyes提供的好像是二维的高斯加权法,一个比较常用的算法,如果要加快运行速度,
可以用如下的整数近似矩阵:
1 2 1
2 4 2
1 2 1
 
图象处理还没有通用的方法,一般都要针对具体应用设计具体算法.
例如,我们做指纹识别时就用了一个非常复杂的滤波算法.

用块平均的滤波太利害了.一般在滤波后用块均值做二值化的效果较好.
另外,求块平均我有快速算法,是象素数目的线性复杂度.
 
elite:
这个问题已经很长时间没有人参加讨论,为保持版面
整洁,节约网友时间,请提问者采取必要处理措施。
关于图形图象版管理细则,请参见<a href="http://www.gislab.ecnu.edu.cn/delphibbs/DispQ.asp?LID=111927">这个</a>问题。如两天
内提问者没有响应,我将采取强制措施。

如有管理建议,请到<a href="http://www.gislab.ecnu.edu.cn/delphibbs/DispQ.asp?LID=111927">这里</a>提出。谢谢!
 
多人接受答案了。
 

Similar threads

S
回复
0
查看
896
SUNSTONE的Delphi笔记
S
S
回复
0
查看
873
SUNSTONE的Delphi笔记
S
S
回复
0
查看
3K
SUNSTONE的Delphi笔记
S
后退
顶部