// PipeService.cpp : 定义控制台应用程序的入口点。
//
#include "stdafx.h"
#define BUFSIZE 1024
#define PIPE_TIMEOUT 1000
int __main(void);
int MyErrExit(char*);
int _tmain(int argc, _TCHAR* argv[])
{
__main();
return 0;
}
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <windows.h>
VOID InstanceThread(LPVOID);
VOID GetAnswerToRequest(LPTSTR, LPTSTR, LPDWORD);
VOID GetAnswerToRequest(HANDLE hFile);
int xx = 0;
/*
//./pipe/egbpipe
*/
int __main(void)
{
BOOL fConnected;
DWORD dwThreadId;
HANDLE hPipe, hThread;
LPTSTR lpszPipename = "////.//pipe//egbpipe";
// The main loop creates an instance of the named pipe and
// then
waits for a client to connect to it. When the client
// connects, a thread is created to handle communications
// with that client, and the loop is repeated.
for (;
{
hPipe = CreateNamedPipe(
lpszPipename, // pipe name
PIPE_ACCESS_DUPLEX, // read/write access
PIPE_TYPE_MESSAGE | // message type pipe
PIPE_READMODE_MESSAGE | // message-read mode
PIPE_WAIT, // blocking mode
PIPE_UNLIMITED_INSTANCES, // max. instances
BUFSIZE, // output buffer size
BUFSIZE, // input buffer size
PIPE_TIMEOUT, // client time-out
NULL);
// no security attribute
if (hPipe == INVALID_HANDLE_VALUE)
MyErrExit("CreatePipe");
// Wait for the client to connect;
if it succeeds,
// the function returns a nonzero value. If the function returns
// zero, GetLastError returns ERROR_PIPE_CONNECTED.
fConnected = ConnectNamedPipe(hPipe, NULL) ?
TRUE : (GetLastError() == ERROR_PIPE_CONNECTED);
if (fConnected)
{
// Create a thread for this client.
hThread = CreateThread(
NULL, // no security attribute
0, // default stack size
(LPTHREAD_START_ROUTINE) InstanceThread,
(LPVOID) hPipe, // thread parameter
0, // not suspended
&dwThreadId);
// returns thread ID
if (hThread == NULL)
MyErrExit("CreateThread");
else
CloseHandle(hThread);
}
else
// The client could not connect, so close the pipe.
CloseHandle(hPipe);
}
return 1;
}
VOID InstanceThread(LPVOID lpvParam)
{
CHAR chRequest[BUFSIZE];
CHAR chReply[BUFSIZE];
DWORD cbBytesRead, cbReplyBytes, cbWritten;
BOOL fSuccess;
HANDLE hPipe;
// The thread's parameter is a handle to a pipe instance.
hPipe = (HANDLE) lpvParam;
// while (1)
{
// Read client requests from the pipe.
/* fSuccess = ReadFile(
hPipe, // handle to pipe
chRequest, // buffer to receive data
BUFSIZE, // size of buffer
&cbBytesRead, // number of bytes read
NULL);
// not overlapped I/O
if (! fSuccess || cbBytesRead == 0)
break;
*/
//GetAnswerToRequest(chRequest, chReply, &cbReplyBytes);
GetAnswerToRequest(hPipe);
/*
// Write the reply to the pipe.
fSuccess = WriteFile(
hPipe, // handle to pipe
chReply, // buffer to write from
cbReplyBytes, // number of bytes to write
&cbWritten, // number of bytes written
NULL);
// not overlapped I/O
// if (! fSuccess || cbReplyBytes != cbWritten) break;
*/ }
// Flush the pipe to allow the client to read the pipe's contents
// before disconnecting. then
disconnect the pipe, and close the
// handle to this pipe instance.
FlushFileBuffers(hPipe);
DisconnectNamedPipe(hPipe);
CloseHandle(hPipe);
}
int MyErrExit(char* szInfo)
{
return MessageBox(0, szInfo, "Whoo", MB_OK);
}
VOID GetAnswerToRequest(HANDLE hFile)
{
const int BuffLen = 10;
byte buff[BuffLen] = {0};
FILE* f = fopen("blue.swf", "rb");
int iLen = BuffLen;
while(iLen == BuffLen)
{
iLen = fread(buff, sizeof(byte), BuffLen, f);
Sleep(3);
DWORD uLen = 0;
WriteFile(hFile, buff, iLen, &uLen, NULL);
}
_fcloseall( );
}