求des加解密算法,要求最终的字节数(用于对字符串加密)不变。(200分)

  • 主题发起人 主题发起人 gdmxwh
  • 开始时间 开始时间
G

gdmxwh

Unregistered / Unconfirmed
GUEST, unregistred user!
rt,谢谢。
 
使用des加密后生成的字符串是变化的!
 
to zengr:
那么请问哪种算法才可以实现呢?
 
A step by step tutorial
Version 1.2


The Data Encryption Standard (DES) algorithm, adopted by the U.S.
government in 1977, is a block cipher that transforms 64-bit data blocks
under a 56-bit secret key, by means of permutation and substitution. It
is officially described in FIPS PUB 46. The DES algorithm is used for
many applications within the government and in the private sector.

This is a tutorial designed to be clear and compact, and to provide a
newcomer to the DES with all the necessary information to implement it
himself, without having to track down printed works or wade through C
source code. I welcome any comments.
Matthew Fischer <mfischer@heinous.isca.uiowa.edu>


Here's how to do it, step by step:

1 Process the key.

1.1 Get a 64-bit key from the user. (Every 8th bit is considered a
parity bit. For a key to have correct parity, each byte should contain
an odd number of "1" bits.)

1.2 Calculate the key schedule.

1.2.1 Perform the following permutation on the 64-bit key. (The parity
bits are discarded, reducing the key to 56 bits. Bit 1 of the permuted
block is bit 57 of the original key, bit 2 is bit 49, and so on with bit
56 being bit 4 of the original key.)

Permuted Choice 1 (PC-1)

57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

1.2.2 Split the permuted key into two halves. The first 28 bits are
called C[0] and the last 28 bits are called D[0].

1.2.3 Calculate the 16 subkeys. Start with i = 1.

1.2.3.1 Perform one or two circular left shifts on both C[i-1] and
D[i-1] to get C and D, respectively. The number of shifts per
iteration are given in the table below.

Iteration # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Left Shifts 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

1.2.3.2 Permute the concatenation CD as indicated below. This
will yield K, which is 48 bits long.

Permuted Choice 2 (PC-2)

14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

1.2.3.3 Loop back to 1.2.3.1 until K[16] has been calculated.

2 Process a 64-bit data block.

2.1 Get a 64-bit data block. If the block is shorter than 64 bits, it
should be padded as appropriate for the application.

2.2 Perform the following permutation on the data block.

Initial Permutation (IP)

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

2.3 Split the block into two halves. The first 32 bits are called L[0],
and the last 32 bits are called R[0].

2.4 Apply the 16 subkeys to the data block. Start with i = 1.

2.4.1 Expand the 32-bit R[i-1] into 48 bits according to the
bit-selection function below.

Expansion (E)

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

2.4.2 Exclusive-or E(R[i-1]) with K.

2.4.3 Break E(R[i-1]) xor K into eight 6-bit blocks. Bits 1-6 are
B[1], bits 7-12 are B[2], and so on with bits 43-48 being B[8].

2.4.4 Substitute the values found in the S-boxes for all B[j]. Start
with j = 1. All values in the S-boxes should be considered 4 bits wide.

2.4.4.1 Take the 1st and 6th bits of B[j] together as a 2-bit value
(call it m) indicating the row in S[j] to look in for the substitution.

2.4.4.2 Take the 2nd through 5th bits of B[j] together as a 4-bit
value (call it n) indicating the column in S[j] to find the substitution.

2.4.4.3 Replace B[j] with S[j][m][n].

Substitution Box 1 (S[1])

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S[2]

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S[3]

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S[4]

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S[5]

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S[6]

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S[7]

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S[8]

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

2.4.4.4 Loop back to 2.4.4.1 until all 8 blocks have been replaced.

2.4.5 Permute the concatenation of B[1] through B[8] as indicated below.

Permutation P

16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

2.4.6 Exclusive-or the resulting value with L[i-1]. Thus, all together,
your R = L[i-1] xor P(S[1](B[1])...S[8](B[8])), where B[j] is a 6-bit
block of E(R[i-1]) xor K. (The function for R is written as, R =
L[i-1] xor f(R[i-1], K).)

2.4.7 L = R[i-1].

2.4.8 Loop back to 2.4.1 until K[16] has been applied.

2.5 Perform the following permutation on the block R[16]L[16].

Final Permutation (IP**-1)

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25


This has been a description of how to use the DES algorithm to encrypt
one 64-bit block. To decrypt, use the same process, but just use the keys
K in reverse order. That is, instead of applying K[1] for the first
iteration, apply K[16], and then K[15] for the second, on down to K[1].

Summaries:

Key schedule:
C[0]D[0] = PC1(key)
for 1 <= i <= 16
C = LS(C[i-1])
D = LS(D[i-1])
K = PC2(CD)

Encipherment:
L[0]R[0] = IP(plain block)
for 1 <= i <= 16
L = R[i-1]
R = L[i-1] xor f(R[i-1], K)
cipher block = FP(R[16]L[16])

Decipherment:
R[16]L[16] = IP(cipher block)
for 1 <= i <= 16
R[i-1] = L
L[i-1] = R xor f(L, K)
plain block = FP(L[0]R[0])


To encrypt or decrypt more than 64 bits there are four official modes
(defined in FIPS PUB 81). One is to go through the above-described
process for each block in succession. This is called Electronic Codebook
(ECB) mode. A stronger method is to exclusive-or each plaintext block
with the preceding ciphertext block prior to encryption. (The first
block is exclusive-or'ed with a secret 64-bit initialization vector
(IV).) This is called Cipher Block Chaining (CBC) mode. The other two
modes are Output Feedback (OFB) and Cipher Feedback (CFB).

When it comes to padding the data block, there are several options. One
is to simply append zeros. Two suggested by FIPS PUB 81 are, if the data
is binary data, fill up the block with bits that are the opposite of the
last bit of data, or, if the data is ASCII data, fill up the block with
random bytes and put the ASCII character for the number of pad bytes in
the last byte of the block. Another technique is to pad the block with
random bytes and in the last 3 bits store the original number of data bytes.

The DES algorithm can also be used to calculate checksums up to 64 bits
long (see FIPS PUB 113). If the number of data bits to be checksummed is
not a multiple of 64, the last data block should be padded with zeros. If
the data is ASCII data, the first bit of each byte should be set to 0.
The data is then encrypted in CBC mode with IV = 0. The leftmost n bits
(where 16 <= n <= 64, and n is a multiple of 8) of the final ciphertext
block are an n-bit checksum.

 
有没有源程序?i need it! thanks a lot!
 
#include <mem.h>
#include "des.h"

int DES::encrypt ( char key[8], char* data, int blocks )
{
if ((!data)||(blocks<1))
return 0

deskey ( key, ENCRYPT )

des ( data, data, blocks)

return 1

}


int DES::decrypt ( char key[8], char* data, int blocks )
{
if ((!data)||(blocks<1))
return 0

deskey ( key, DECRYPT )

des ( data, data, blocks)

return 1

}


int DES::yencrypt ( char key[8], char* data, int size )
{
if ((!data)||(size<1))
return 0


// The last char of data is bitwise complemented and filled the rest
// buffer.If size is 16, it will extend to 24,and 17 still 24.
char lastChar = *(data+size-1)

int blocks = size/8+1

memset (data+size, ~lastChar, blocks*8-size)

deskey ( key, ENCRYPT )

return encrypt ( data, data, blocks)

}


int DES::ydecrypt ( char key[8], char* data, int blocks, int* size )
{
if ( (!data) || (blocks<1) )
return 0


deskey ( key, DECRYPT )

if ( !decrypt ( data, data, blocks) )
return 0

if ( size != 0 )
{
int pos = blocks*8-1

char endChar = data[pos]

while ((pos>0)&amp;&amp;(data[pos]==endChar))
pos--

if ( data[pos] != ~endChar )
return 0

*size = pos+1

}
return 1

}


// -----------------------------------------------------------------------
// des
// Encrpts/Decrypts(according to the key currently loaded int the
// internal key register) SOME blocks of eight bytes at address 'in'
// into the block at address 'out'. They can be the same.
//
// "in"
// "out"
// "block" Number of blocks.
// -----------------------------------------------------------------------
void DES::des ( unsigned char* in, unsigned char* out, int blocks )
{
for (int i = 0
i < blocks
i++,in+=8,out+=8)
des_block(in,out)

}


// -----------------------------------------------------------------------
// des_block
// Encrpts/Decrypts(according to the key currently loaded int the
// internal key register) one block of eight bytes at address 'in'
// into the block at address 'out'. They can be the same.
//
// "in"
// "out"
// -----------------------------------------------------------------------
void DES::des_block(unsigned char *in, unsigned char *out)
{
unsigned long work[2]


scrunch(in, work)

desfunc(work, KnL)

unscrun(work, out)

}

// ----------------------------------------------------------------------
// deskey
// Sets the internal key register (KnR) according to the hexadecimal
// key contained in the 8 bytes of hexkey, according to the DES,
// for encryption or decrytion according to MODE
//
// "key" is the 64 bits key.
// "md" means encryption or decryption.
// ----------------------------------------------------------------------
void DES::deskey(unsigned char key[8], Mode md) /* Thanks to James Gillogly &amp
Phil Karn! */
{
register int i, j, l, m, n

unsigned char pc1m[56], pcr[56]

unsigned long kn[32]


for (j = 0
j < 56
j++) {
l = pc1[j]

m = l &amp
07

pc1m[j] = (key[l >> 3] &amp
bytebit[m]) ? 1:0

}
for (i = 0
i < 16
i++) {
if (md == DECRYPT) m = (15 - i) << 1

else m = i << 1

n = m + 1

kn[m] = kn[n] = 0L

for (j = 0
j < 28
j++) {
l = j + totrot

if (l < 28) pcr[j] = pc1m[l]

else pcr[j] = pc1m[l - 28]

}
for (j = 28
j < 56
j++) {
l = j + totrot

if (l < 56) pcr[j] = pc1m[l]

else pcr[j] = pc1m[l - 28]

}
for (j = 0
j < 24
j++) {
if (pcr[ pc2[j] ]) kn[m] |= bigbyte[j]

if (pcr[ pc2[j+24] ]) kn[n] |= bigbyte[j]

}
}
cookey(kn)

return

}

// ----------------------------------------------------------------------
// cookey
// Only called by deskey.
// -----------------------------------------------------------------------
void DES::cookey(register unsigned long *raw1)
{
register unsigned long *cook, *raw0

unsigned long dough[32]

register int i


cook = dough

for (i = 0
i < 16
i++, raw1++) {
raw0 = raw1++

*cook = (*raw0 &amp
0x00fc0000L) << 6

*cook |= (*raw0 &amp
0x00000fc0L) << 10

*cook |= (*raw1 &amp
0x00fc0000L) >> 10

*cook++ |= (*raw1 &amp
0x00000fc0L) >> 6

*cook = (*raw0 &amp
0x0003f000L) << 12

*cook |= (*raw0 &amp
0x0000003fL) << 16

*cook |= (*raw1 &amp
0x0003f000L) >> 4

*cook++ |= (*raw1 &amp
0x0000003fL)

}
usekey(dough)

return

}

// ----------------------------------------------------------------------
// usekey
// Only called by cookey.
// Loads the interal key register with the data in cookedkey.
// -----------------------------------------------------------------------
void DES::usekey(register unsigned long *from)
{
register unsigned long *to, *endp


to = KnL, endp = &amp;KnL[32]

while (to < endp) *to++ = *from++

return

}

void DES::scrunch(register unsigned char *outof, register unsigned long *into )
{
*into = (*outof++ &amp
0xffL) << 24

*into |= (*outof++ &amp
0xffL) << 16

*into |= (*outof++ &amp
0xffL) << 8

*into++ |= (*outof++ &amp
0xffL)

*into = (*outof++ &amp
0xffL) << 24

*into |= (*outof++ &amp
0xffL) << 16

*into |= (*outof++ &amp
0xffL) << 8

*into |= (*outof &amp
0xffL)

return

}

void DES::unscrun(register unsigned long *outof, register unsigned char *into)
{
*into++ = (*outof >> 24) &amp
0xffL

*into++ = (*outof >> 16) &amp
0xffL

*into++ = (*outof >> 8) &amp
0xffL

*into++ = *outof++ &amp
0xffL

*into++ = (*outof >> 24) &amp
0xffL

*into++ = (*outof >> 16) &amp
0xffL

*into++ = (*outof >> 8) &amp
0xffL

*into = *outof &amp
0xffL

return

}

void DES::desfunc(register unsigned long *block,register unsigned long *keys)
{
register unsigned long fval, work, right, leftt

register int round


leftt = block[0]

right = block[1]

work = ((leftt >> 4) ^ right) &amp
0x0f0f0f0fL

right ^= work

leftt ^= (work << 4)

work = ((leftt >> 16) ^ right) &amp
0x0000ffffL

right ^= work

leftt ^= (work << 16)

work = ((right >> 2) ^ leftt) &amp
0x33333333L

leftt ^= work

right ^= (work << 2)

work = ((right >> 8) ^ leftt) &amp
0x00ff00ffL

leftt ^= work

right ^= (work << 8)

right = ((right << 1) | ((right >> 31) &amp
1L)) &amp
0xffffffffL

work = (leftt ^ right) &amp
0xaaaaaaaaL

leftt ^= work

right ^= work

leftt = ((leftt << 1) | ((leftt >> 31) &amp
1L)) &amp
0xffffffffL


for (round = 0
round < 8
round++) {
work = (right << 28) | (right >> 4)

work ^= *keys++

fval = SP7[work &amp
0x3fL]

fval |= SP5[(work >> 8) &amp
0x3fL]

fval |= SP3[(work >> 16) &amp
0x3fL]

fval |= SP1[(work >> 24) &amp
0x3fL]

work = right ^ *keys++

fval |= SP8[work &amp
0x3fL]

fval |= SP6[(work >> 8) &amp
0x3fL]

fval |= SP4[(work >> 16) &amp
0x3fL]

fval |= SP2[(work >> 24) &amp
0x3fL]

leftt ^= fval

work = (leftt << 28) | (leftt >> 4)

work ^= *keys++

fval = SP7[work &amp
0x3fL]

fval |= SP5[(work >> 8) &amp
0x3fL]

fval |= SP3[(work >> 16) &amp
0x3fL]

fval |= SP1[(work >> 24) &amp
0x3fL]

work = leftt ^ *keys++

fval |= SP8[work &amp
0x3fL]

fval |= SP6[(work >> 8) &amp
0x3fL]

fval |= SP4[(work >> 16) &amp
0x3fL]

fval |= SP2[(work >> 24) &amp
0x3fL]

right ^= fval

}
right = (right << 31) | (right >> 1)

work = (leftt ^ right) &amp
0xaaaaaaaaL

leftt ^= work

right ^= work

leftt = (leftt << 31) | ( leftt >> 1)

work = ((leftt >> 8) ^ right) &amp
0x00ff00ffL

right ^= work

leftt ^= (work << 8)

work = ((leftt >> 2) ^ right) &amp
0x33333333L

right ^= work

leftt ^= (work << 2)

work = ((right >> 16) ^ leftt) &amp
0x0000ffffL

leftt ^= work

right ^= (work << 16)

work = ((right >> 4) ^ leftt) &amp
0x0f0f0f0fL

leftt ^= work

right ^= (work << 4)

*block++ = right

*block = leftt

return

}

// -----------------------------------------------------------------------
// Initial of static data members. These data will be used by all the
// instances of class,and can not be changed.
// -----------------------------------------------------------------------
unsigned char DES::Df_Key[24] = {
0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10,
0x89, 0xab, 0xcd, 0xef, 0x01, 0x23, 0x45, 0x67 }


unsigned short DES::bytebit[8] = {
0200, 0100, 040, 020, 010, 04, 02, 01 }


unsigned long DES::bigbyte[24] = {
0x800000L, 0x400000L, 0x200000L, 0x100000L,
0x80000L, 0x40000L, 0x20000L, 0x10000L,
0x8000L, 0x4000L, 0x2000L, 0x1000L,
0x800L, 0x400L, 0x200L, 0x100L,
0x80L, 0x40L, 0x20L, 0x10L,
0x8L, 0x4L, 0x2L, 0x1L }


unsigned char DES::pc1[56] = {
56, 48, 40, 32, 24, 16, 8, 0, 57, 49, 41, 33, 25, 17,
9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35,
62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21,
13, 5, 60, 52, 44, 36, 28, 20, 12, 4, 27, 19, 11, 3 }


unsigned char DES::totrot[16] = {
1, 2, 4, 6, 8, 10, 12, 14, 15, 17, 19, 21, 23, 25, 27, 28 }


unsigned char DES::pc2[48] = {
13, 16, 10, 23, 0, 4, 2, 27, 14, 5, 20, 9,
22, 18, 11, 3, 25, 7, 15, 6, 26, 19, 12, 1,
40, 51, 30, 36, 46, 54, 29, 39, 50, 44, 32, 47,
43, 48, 38, 55, 33, 52, 45, 41, 49, 35, 28, 31 }


unsigned long DES::SP1[64] = {
0x01010400L, 0x00000000L, 0x00010000L, 0x01010404L,
0x01010004L, 0x00010404L, 0x00000004L, 0x00010000L,
0x00000400L, 0x01010400L, 0x01010404L, 0x00000400L,
0x01000404L, 0x01010004L, 0x01000000L, 0x00000004L,
0x00000404L, 0x01000400L, 0x01000400L, 0x00010400L,
0x00010400L, 0x01010000L, 0x01010000L, 0x01000404L,
0x00010004L, 0x01000004L, 0x01000004L, 0x00010004L,
0x00000000L, 0x00000404L, 0x00010404L, 0x01000000L,
0x00010000L, 0x01010404L, 0x00000004L, 0x01010000L,
0x01010400L, 0x01000000L, 0x01000000L, 0x00000400L,
0x01010004L, 0x00010000L, 0x00010400L, 0x01000004L,
0x00000400L, 0x00000004L, 0x01000404L, 0x00010404L,
0x01010404L, 0x00010004L, 0x01010000L, 0x01000404L,
0x01000004L, 0x00000404L, 0x00010404L, 0x01010400L,
0x00000404L, 0x01000400L, 0x01000400L, 0x00000000L,
0x00010004L, 0x00010400L, 0x00000000L, 0x01010004L }


unsigned long DES::SP2[64] = {
0x80108020L, 0x80008000L, 0x00008000L, 0x00108020L,
0x00100000L, 0x00000020L, 0x80100020L, 0x80008020L,
0x80000020L, 0x80108020L, 0x80108000L, 0x80000000L,
0x80008000L, 0x00100000L, 0x00000020L, 0x80100020L,
0x00108000L, 0x00100020L, 0x80008020L, 0x00000000L,
0x80000000L, 0x00008000L, 0x00108020L, 0x80100000L,
0x00100020L, 0x80000020L, 0x00000000L, 0x00108000L,
0x00008020L, 0x80108000L, 0x80100000L, 0x00008020L,
0x00000000L, 0x00108020L, 0x80100020L, 0x00100000L,
0x80008020L, 0x80100000L, 0x80108000L, 0x00008000L,
0x80100000L, 0x80008000L, 0x00000020L, 0x80108020L,
0x00108020L, 0x00000020L, 0x00008000L, 0x80000000L,
0x00008020L, 0x80108000L, 0x00100000L, 0x80000020L,
0x00100020L, 0x80008020L, 0x80000020L, 0x00100020L,
0x00108000L, 0x00000000L, 0x80008000L, 0x00008020L,
0x80000000L, 0x80100020L, 0x80108020L, 0x00108000L }


unsigned long DES::SP3[64] = {
0x00000208L, 0x08020200L, 0x00000000L, 0x08020008L,
0x08000200L, 0x00000000L, 0x00020208L, 0x08000200L,
0x00020008L, 0x08000008L, 0x08000008L, 0x00020000L,
0x08020208L, 0x00020008L, 0x08020000L, 0x00000208L,
0x08000000L, 0x00000008L, 0x08020200L, 0x00000200L,
0x00020200L, 0x08020000L, 0x08020008L, 0x00020208L,
0x08000208L, 0x00020200L, 0x00020000L, 0x08000208L,
0x00000008L, 0x08020208L, 0x00000200L, 0x08000000L,
0x08020200L, 0x08000000L, 0x00020008L, 0x00000208L,
0x00020000L, 0x08020200L, 0x08000200L, 0x00000000L,
0x00000200L, 0x00020008L, 0x08020208L, 0x08000200L,
0x08000008L, 0x00000200L, 0x00000000L, 0x08020008L,
0x08000208L, 0x00020000L, 0x08000000L, 0x08020208L,
0x00000008L, 0x00020208L, 0x00020200L, 0x08000008L,
0x08020000L, 0x08000208L, 0x00000208L, 0x08020000L,
0x00020208L, 0x00000008L, 0x08020008L, 0x00020200L }


unsigned long DES::SP4[64] = {
0x00802001L, 0x00002081L, 0x00002081L, 0x00000080L,
0x00802080L, 0x00800081L, 0x00800001L, 0x00002001L,
0x00000000L, 0x00802000L, 0x00802000L, 0x00802081L,
0x00000081L, 0x00000000L, 0x00800080L, 0x00800001L,
0x00000001L, 0x00002000L, 0x00800000L, 0x00802001L,
0x00000080L, 0x00800000L, 0x00002001L, 0x00002080L,
0x00800081L, 0x00000001L, 0x00002080L, 0x00800080L,
0x00002000L, 0x00802080L, 0x00802081L, 0x00000081L,
0x00800080L, 0x00800001L, 0x00802000L, 0x00802081L,
0x00000081L, 0x00000000L, 0x00000000L, 0x00802000L,
0x00002080L, 0x00800080L, 0x00800081L, 0x00000001L,
0x00802001L, 0x00002081L, 0x00002081L, 0x00000080L,
0x00802081L, 0x00000081L, 0x00000001L, 0x00002000L,
0x00800001L, 0x00002001L, 0x00802080L, 0x00800081L,
0x00002001L, 0x00002080L, 0x00800000L, 0x00802001L,
0x00000080L, 0x00800000L, 0x00002000L, 0x00802080L }


unsigned long DES::SP5[64] = {
0x00000100L, 0x02080100L, 0x02080000L, 0x42000100L,
0x00080000L, 0x00000100L, 0x40000000L, 0x02080000L,
0x40080100L, 0x00080000L, 0x02000100L, 0x40080100L,
0x42000100L, 0x42080000L, 0x00080100L, 0x40000000L,
0x02000000L, 0x40080000L, 0x40080000L, 0x00000000L,
0x40000100L, 0x42080100L, 0x42080100L, 0x02000100L,
0x42080000L, 0x40000100L, 0x00000000L, 0x42000000L,
0x02080100L, 0x02000000L, 0x42000000L, 0x00080100L,
0x00080000L, 0x42000100L, 0x00000100L, 0x02000000L,
0x40000000L, 0x02080000L, 0x42000100L, 0x40080100L,
0x02000100L, 0x40000000L, 0x42080000L, 0x02080100L,
0x40080100L, 0x00000100L, 0x02000000L, 0x42080000L,
0x42080100L, 0x00080100L, 0x42000000L, 0x42080100L,
0x02080000L, 0x00000000L, 0x40080000L, 0x42000000L,
0x00080100L, 0x02000100L, 0x40000100L, 0x00080000L,
0x00000000L, 0x40080000L, 0x02080100L, 0x40000100L }


unsigned long DES::SP6[64] = {
0x20000010L, 0x20400000L, 0x00004000L, 0x20404010L,
0x20400000L, 0x00000010L, 0x20404010L, 0x00400000L,
0x20004000L, 0x00404010L, 0x00400000L, 0x20000010L,
0x00400010L, 0x20004000L, 0x20000000L, 0x00004010L,
0x00000000L, 0x00400010L, 0x20004010L, 0x00004000L,
0x00404000L, 0x20004010L, 0x00000010L, 0x20400010L,
0x20400010L, 0x00000000L, 0x00404010L, 0x20404000L,
0x00004010L, 0x00404000L, 0x20404000L, 0x20000000L,
0x20004000L, 0x00000010L, 0x20400010L, 0x00404000L,
0x20404010L, 0x00400000L, 0x00004010L, 0x20000010L,
0x00400000L, 0x20004000L, 0x20000000L, 0x00004010L,
0x20000010L, 0x20404010L, 0x00404000L, 0x20400000L,
0x00404010L, 0x20404000L, 0x00000000L, 0x20400010L,
0x00000010L, 0x00004000L, 0x20400000L, 0x00404010L,
0x00004000L, 0x00400010L, 0x20004010L, 0x00000000L,
0x20404000L, 0x20000000L, 0x00400010L, 0x20004010L }


unsigned long DES::SP7[64] = {
0x00200000L, 0x04200002L, 0x04000802L, 0x00000000L,
0x00000800L, 0x04000802L, 0x00200802L, 0x04200800L,
0x04200802L, 0x00200000L, 0x00000000L, 0x04000002L,
0x00000002L, 0x04000000L, 0x04200002L, 0x00000802L,
0x04000800L, 0x00200802L, 0x00200002L, 0x04000800L,
0x04000002L, 0x04200000L, 0x04200800L, 0x00200002L,
0x04200000L, 0x00000800L, 0x00000802L, 0x04200802L,
0x00200800L, 0x00000002L, 0x04000000L, 0x00200800L,
0x04000000L, 0x00200800L, 0x00200000L, 0x04000802L,
0x04000802L, 0x04200002L, 0x04200002L, 0x00000002L,
0x00200002L, 0x04000000L, 0x04000800L, 0x00200000L,
0x04200800L, 0x00000802L, 0x00200802L, 0x04200800L,
0x00000802L, 0x04000002L, 0x04200802L, 0x04200000L,
0x00200800L, 0x00000000L, 0x00000002L, 0x04200802L,
0x00000000L, 0x00200802L, 0x04200000L, 0x00000800L,
0x04000002L, 0x04000800L, 0x00000800L, 0x00200002L }


unsigned long DES::SP8[64] = {
0x10001040L, 0x00001000L, 0x00040000L, 0x10041040L,
0x10000000L, 0x10001040L, 0x00000040L, 0x10000000L,
0x00040040L, 0x10040000L, 0x10041040L, 0x00041000L,
0x10041000L, 0x00041040L, 0x00001000L, 0x00000040L,
0x10040000L, 0x10000040L, 0x10001000L, 0x00001040L,
0x00041000L, 0x00040040L, 0x10040040L, 0x10041000L,
0x00001040L, 0x00000000L, 0x00000000L, 0x10040040L,
0x10000040L, 0x10001000L, 0x00041040L, 0x00040000L,
0x00041040L, 0x00040000L, 0x10041000L, 0x00001000L,
0x00000040L, 0x10040040L, 0x00001000L, 0x00041040L,
0x10001000L, 0x00000040L, 0x10000040L, 0x10040000L,
0x10040040L, 0x10000000L, 0x00040000L, 0x10001040L,
0x00000000L, 0x10041040L, 0x00040040L, 0x10000040L,
0x10040000L, 0x10001000L, 0x10001040L, 0x00000000L,
0x10041040L, 0x00041000L, 0x00041000L, 0x00001040L,
0x00001040L, 0x00040040L, 0x10000000L, 0x10041000L }

admin
 
接受答案了。
 
后退
顶部