关于AES解密.200分啊200分.(200分)

  • 主题发起人 主题发起人 jingtao
  • 开始时间 开始时间
J

jingtao

Unregistered / Unconfirmed
GUEST, unregistred user!
function AESDecryptBuffer128(dest: Pchar; destLen: PLongint;
source: Pchar; Count: Longint; const strKey: string): integer;
var
Key: TAESKey128;
ExpandedKey: TAESExpandedKey128;
TempIn, TempOut: TAESBuffer;//TAESBuffer = array [0..15] of byte;
Done: cardinal;
s:string;
i:integer;
begin
if Count = 0 then exit;
if (Count mod SizeOf(TAESBuffer)) > 0 then Exit;
// Prepare key...
FillChar(Key, SizeOf(Key), 0);
Move(PChar(strKey)^, Key, Min(SizeOf(Key), Length(strKey)));

s:='';
for i:=Low(Key) to High(Key) do s:=s+IntToHex(Key,2);
WriteDat('key:'+s);

ExpandAESKeyForEncryption(Key, ExpandedKey);
s:='';
for i:=Low(ExpandedKey) to High(ExpandedKey) do s:=s+IntToHex(ExpandedKey,2);
WriteDat('ExpandedKey:'+s);
destLen^:=0;

while Count >= SizeOf(TAESBuffer) do
begin
CopyMemory(@TempIn,source+destLen^, SizeOf(TempIn));
s:='';
for i:=Low(TempIn) to High(TempIn) do s:=s+IntToHex(TempIn,2);
WriteDat('TempIn:'+s);
DecryptAES(TempIn, ExpandedKey, TempOut);
s:='';
for i:=Low(TempOut) to High(TempOut) do s:=s+IntToHex(TempOut,2);
WriteDat('TempOut:'+s);
CopyMemory(dest+destLen^,@TempOut, SizeOf(TempOut));
Dec(Count, SizeOf(TAESBuffer));
Inc(destLen^,SizeOf(TAESBuffer));
end;

end;


为什么解密不正确啊..
 
必须先引用ElAES;单元


(**************************************************)
(* *)
(* Advanced Encryption Standard (AES) *)
(* *)
(* Copyright (c) 1998-2001 *)
(* EldoS, Alexander Ionov *)
(* *)
(**************************************************)

unit ElAES;

interface

uses
Classes, SysUtils;

type
EAESError = class(Exception);

PInteger = ^Integer;

TAESBuffer = array [0..15] of byte;
TAESKey128 = array [0..15] of byte;
TAESKey192 = array [0..23] of byte;
TAESKey256 = array [0..31] of byte;
TAESExpandedKey128 = array [0..43] of longword;
TAESExpandedKey192 = array [0..53] of longword;
TAESExpandedKey256 = array [0..63] of longword;

PAESBuffer =^TAESBuffer;
PAESKey128 =^TAESKey128;
PAESKey192 =^TAESKey192;
PAESKey256 =^TAESKey256;
PAESExpandedKey128 =^TAESExpandedKey128;
PAESExpandedKey192 =^TAESExpandedKey192;
PAESExpandedKey256 =^TAESExpandedKey256;

// Key expansion routines for encryption

procedure ExpandAESKeyForEncryption(const Key: TAESKey128;
var ExpandedKey: TAESExpandedKey128); overload;
procedure ExpandAESKeyForEncryption(const Key: TAESKey192;
var ExpandedKey: TAESExpandedKey192); overload;
procedure ExpandAESKeyForEncryption(const Key: TAESKey256;
var ExpandedKey: TAESExpandedKey256); overload;

// Block encryption routines

procedure EncryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey128;
var OutBuf: TAESBuffer); overload;
procedure EncryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey192;
var OutBuf: TAESBuffer); overload;
procedure EncryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey256;
var OutBuf: TAESBuffer); overload;

// Stream encryption routines (ECB mode)

procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
const Key: TAESKey128; Dest: TStream); overload;
procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
const ExpandedKey: TAESExpandedKey128; Dest: TStream); overload;

procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
const Key: TAESKey192; Dest: TStream); overload;
procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
const ExpandedKey: TAESExpandedKey192; Dest: TStream); overload;

procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
const Key: TAESKey256; Dest: TStream); overload;
procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
const ExpandedKey: TAESExpandedKey256; Dest: TStream); overload;

// Stream encryption routines (CBC mode)

procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
const Key: TAESKey128; const InitVector: TAESBuffer; Dest: TStream); overload;
procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
const ExpandedKey: TAESExpandedKey128; const InitVector: TAESBuffer;
Dest: TStream); overload;

procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
const Key: TAESKey192; const InitVector: TAESBuffer; Dest: TStream); overload;
procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
const ExpandedKey: TAESExpandedKey192; const InitVector: TAESBuffer;
Dest: TStream); overload;

procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
const Key: TAESKey256; const InitVector: TAESBuffer; Dest: TStream); overload;
procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
const ExpandedKey: TAESExpandedKey256; const InitVector: TAESBuffer;
Dest: TStream); overload;

// Key transformation routines for decryption

procedure ExpandAESKeyForDecryption(var ExpandedKey: TAESExpandedKey128); overload;
procedure ExpandAESKeyForDecryption(const Key: TAESKey128;
var ExpandedKey: TAESExpandedKey128); overload;

procedure ExpandAESKeyForDecryption(var ExpandedKey: TAESExpandedKey192); overload;
procedure ExpandAESKeyForDecryption(const Key: TAESKey192;
var ExpandedKey: TAESExpandedKey192); overload;

procedure ExpandAESKeyForDecryption(var ExpandedKey: TAESExpandedKey256); overload;
procedure ExpandAESKeyForDecryption(const Key: TAESKey256;
var ExpandedKey: TAESExpandedKey256); overload;

// Block decryption routines

procedure DecryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey128;
var OutBuf: TAESBuffer); overload;
procedure DecryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey192;
var OutBuf: TAESBuffer); overload;
procedure DecryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey256;
var OutBuf: TAESBuffer); overload;

// Stream decryption routines (ECB mode)

procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
const Key: TAESKey128; Dest: TStream); overload;
procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
const ExpandedKey: TAESExpandedKey128; Dest: TStream); overload;

procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
const Key: TAESKey192; Dest: TStream); overload;
procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
const ExpandedKey: TAESExpandedKey192; Dest: TStream); overload;

procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
const Key: TAESKey256; Dest: TStream); overload;
procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
const ExpandedKey: TAESExpandedKey256; Dest: TStream); overload;

// Stream decryption routines (CBC mode)

procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
const Key: TAESKey128; const InitVector: TAESBuffer; Dest: TStream); overload;
procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
const ExpandedKey: TAESExpandedKey128; const InitVector: TAESBuffer;
Dest: TStream); overload;

procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
const Key: TAESKey192; const InitVector: TAESBuffer; Dest: TStream); overload;
procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
const ExpandedKey: TAESExpandedKey192; const InitVector: TAESBuffer;
Dest: TStream); overload;

procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
const Key: TAESKey256; const InitVector: TAESBuffer; Dest: TStream); overload;
procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
const ExpandedKey: TAESExpandedKey256; const InitVector: TAESBuffer;
Dest: TStream); overload;

resourcestring
SInvalidInBufSize = 'Invalid buffer size for decryption';
SReadError = 'Stream read error';
SWriteError = 'Stream write error';

implementation

type
PLongWord = ^LongWord;

function Min(A, B: integer): integer;
begin
if A < B then
Result := A
else
Result := B;
end;

const
Rcon: array [1..30] of longword = (
$00000001, $00000002, $00000004, $00000008, $00000010, $00000020,
$00000040, $00000080, $0000001B, $00000036, $0000006C, $000000D8,
$000000AB, $0000004D, $0000009A, $0000002F, $0000005E, $000000BC,
$00000063, $000000C6, $00000097, $00000035, $0000006A, $000000D4,
$000000B3, $0000007D, $000000FA, $000000EF, $000000C5, $00000091
);

ForwardTable: array [0..255] of longword = (
$A56363C6, $847C7CF8, $997777EE, $8D7B7BF6, $0DF2F2FF, $BD6B6BD6, $B16F6FDE, $54C5C591,
$50303060, $03010102, $A96767CE, $7D2B2B56, $19FEFEE7, $62D7D7B5, $E6ABAB4D, $9A7676EC,
$45CACA8F, $9D82821F, $40C9C989, $877D7DFA, $15FAFAEF, $EB5959B2, $C947478E, $0BF0F0FB,
$ECADAD41, $67D4D4B3, $FDA2A25F, $EAAFAF45, $BF9C9C23, $F7A4A453, $967272E4, $5BC0C09B,
$C2B7B775, $1CFDFDE1, $AE93933D, $6A26264C, $5A36366C, $413F3F7E, $02F7F7F5, $4FCCCC83,
$5C343468, $F4A5A551, $34E5E5D1, $08F1F1F9, $937171E2, $73D8D8AB, $53313162, $3F15152A,
$0C040408, $52C7C795, $65232346, $5EC3C39D, $28181830, $A1969637, $0F05050A, $B59A9A2F,
$0907070E, $36121224, $9B80801B, $3DE2E2DF, $26EBEBCD, $6927274E, $CDB2B27F, $9F7575EA,
$1B090912, $9E83831D, $742C2C58, $2E1A1A34, $2D1B1B36, $B26E6EDC, $EE5A5AB4, $FBA0A05B,
$F65252A4, $4D3B3B76, $61D6D6B7, $CEB3B37D, $7B292952, $3EE3E3DD, $712F2F5E, $97848413,
$F55353A6, $68D1D1B9, $00000000, $2CEDEDC1, $60202040, $1FFCFCE3, $C8B1B179, $ED5B5BB6,
$BE6A6AD4, $46CBCB8D, $D9BEBE67, $4B393972, $DE4A4A94, $D44C4C98, $E85858B0, $4ACFCF85,
$6BD0D0BB, $2AEFEFC5, $E5AAAA4F, $16FBFBED, $C5434386, $D74D4D9A, $55333366, $94858511,
$CF45458A, $10F9F9E9, $06020204, $817F7FFE, $F05050A0, $443C3C78, $BA9F9F25, $E3A8A84B,
$F35151A2, $FEA3A35D, $C0404080, $8A8F8F05, $AD92923F, $BC9D9D21, $48383870, $04F5F5F1,
$DFBCBC63, $C1B6B677, $75DADAAF, $63212142, $30101020, $1AFFFFE5, $0EF3F3FD, $6DD2D2BF,
$4CCDCD81, $140C0C18, $35131326, $2FECECC3, $E15F5FBE, $A2979735, $CC444488, $3917172E,
$57C4C493, $F2A7A755, $827E7EFC, $473D3D7A, $AC6464C8, $E75D5DBA, $2B191932, $957373E6,
$A06060C0, $98818119, $D14F4F9E, $7FDCDCA3, $66222244, $7E2A2A54, $AB90903B, $8388880B,
$CA46468C, $29EEEEC7, $D3B8B86B, $3C141428, $79DEDEA7, $E25E5EBC, $1D0B0B16, $76DBDBAD,
$3BE0E0DB, $56323264, $4E3A3A74, $1E0A0A14, $DB494992, $0A06060C, $6C242448, $E45C5CB8,
$5DC2C29F, $6ED3D3BD, $EFACAC43, $A66262C4, $A8919139, $A4959531, $37E4E4D3, $8B7979F2,
$32E7E7D5, $43C8C88B, $5937376E, $B76D6DDA, $8C8D8D01, $64D5D5B1, $D24E4E9C, $E0A9A949,
$B46C6CD8, $FA5656AC, $07F4F4F3, $25EAEACF, $AF6565CA, $8E7A7AF4, $E9AEAE47, $18080810,
$D5BABA6F, $887878F0, $6F25254A, $722E2E5C, $241C1C38, $F1A6A657, $C7B4B473, $51C6C697,
$23E8E8CB, $7CDDDDA1, $9C7474E8, $211F1F3E, $DD4B4B96, $DCBDBD61, $868B8B0D, $858A8A0F,
$907070E0, $423E3E7C, $C4B5B571, $AA6666CC, $D8484890, $05030306, $01F6F6F7, $120E0E1C,
$A36161C2, $5F35356A, $F95757AE, $D0B9B969, $91868617, $58C1C199, $271D1D3A, $B99E9E27,
$38E1E1D9, $13F8F8EB, $B398982B, $33111122, $BB6969D2, $70D9D9A9, $898E8E07, $A7949433,
$B69B9B2D, $221E1E3C, $92878715, $20E9E9C9, $49CECE87, $FF5555AA, $78282850, $7ADFDFA5,
$8F8C8C03, $F8A1A159, $80898909, $170D0D1A, $DABFBF65, $31E6E6D7, $C6424284, $B86868D0,
$C3414182, $B0999929, $772D2D5A, $110F0F1E, $CBB0B07B, $FC5454A8, $D6BBBB6D, $3A16162C
);

LastForwardTable: array [0..255] of longword = (
$00000063, $0000007C, $00000077, $0000007B, $000000F2, $0000006B, $0000006F, $000000C5,
$00000030, $00000001, $00000067, $0000002B, $000000FE, $000000D7, $000000AB, $00000076,
$000000CA, $00000082, $000000C9, $0000007D, $000000FA, $00000059, $00000047, $000000F0,
$000000AD, $000000D4, $000000A2, $000000AF, $0000009C, $000000A4, $00000072, $000000C0,
$000000B7, $000000FD, $00000093, $00000026, $00000036, $0000003F, $000000F7, $000000CC,
$00000034, $000000A5, $000000E5, $000000F1, $00000071, $000000D8, $00000031, $00000015,
$00000004, $000000C7, $00000023, $000000C3, $00000018, $00000096, $00000005, $0000009A,
$00000007, $00000012, $00000080, $000000E2, $000000EB, $00000027, $000000B2, $00000075,
$00000009, $00000083, $0000002C, $0000001A, $0000001B, $0000006E, $0000005A, $000000A0,
$00000052, $0000003B, $000000D6, $000000B3, $00000029, $000000E3, $0000002F, $00000084,
$00000053, $000000D1, $00000000, $000000ED, $00000020, $000000FC, $000000B1, $0000005B,
$0000006A, $000000CB, $000000BE, $00000039, $0000004A, $0000004C, $00000058, $000000CF,
$000000D0, $000000EF, $000000AA, $000000FB, $00000043, $0000004D, $00000033, $00000085,
$00000045, $000000F9, $00000002, $0000007F, $00000050, $0000003C, $0000009F, $000000A8,
$00000051, $000000A3, $00000040, $0000008F, $00000092, $0000009D, $00000038, $000000F5,
$000000BC, $000000B6, $000000DA, $00000021, $00000010, $000000FF, $000000F3, $000000D2,
$000000CD, $0000000C, $00000013, $000000EC, $0000005F, $00000097, $00000044, $00000017,
$000000C4, $000000A7, $0000007E, $0000003D, $00000064, $0000005D, $00000019, $00000073,
$00000060, $00000081, $0000004F, $000000DC, $00000022, $0000002A, $00000090, $00000088,
$00000046, $000000EE, $000000B8, $00000014, $000000DE, $0000005E, $0000000B, $000000DB,
$000000E0, $00000032, $0000003A, $0000000A, $00000049, $00000006, $00000024, $0000005C,
$000000C2, $000000D3, $000000AC, $00000062, $00000091, $00000095, $000000E4, $00000079,
$000000E7, $000000C8, $00000037, $0000006D, $0000008D, $000000D5, $0000004E, $000000A9,
$0000006C, $00000056, $000000F4, $000000EA, $00000065, $0000007A, $000000AE, $00000008,
$000000BA, $00000078, $00000025, $0000002E, $0000001C, $000000A6, $000000B4, $000000C6,
$000000E8, $000000DD, $00000074, $0000001F, $0000004B, $000000BD, $0000008B, $0000008A,
$00000070, $0000003E, $000000B5, $00000066, $00000048, $00000003, $000000F6, $0000000E,
$00000061, $00000035, $00000057, $000000B9, $00000086, $000000C1, $0000001D, $0000009E,
$000000E1, $000000F8, $00000098, $00000011, $00000069, $000000D9, $0000008E, $00000094,
$0000009B, $0000001E, $00000087, $000000E9, $000000CE, $00000055, $00000028, $000000DF,
$0000008C, $000000A1, $00000089, $0000000D, $000000BF, $000000E6, $00000042, $00000068,
$00000041, $00000099, $0000002D, $0000000F, $000000B0, $00000054, $000000BB, $00000016
);

InverseTable: array [0..255] of longword = (
$50A7F451, $5365417E, $C3A4171A, $965E273A, $CB6BAB3B, $F1459D1F, $AB58FAAC, $9303E34B,
$55FA3020, $F66D76AD, $9176CC88, $254C02F5, $FCD7E54F, $D7CB2AC5, $80443526, $8FA362B5,
$495AB1DE, $671BBA25, $980EEA45, $E1C0FE5D, $02752FC3, $12F04C81, $A397468D, $C6F9D36B,
$E75F8F03, $959C9215, $EB7A6DBF, $DA595295, $2D83BED4, $D3217458, $2969E049, $44C8C98E,
$6A89C275, $78798EF4, $6B3E5899, $DD71B927, $B64FE1BE, $17AD88F0, $66AC20C9, $B43ACE7D,
$184ADF63, $82311AE5, $60335197, $457F5362, $E07764B1, $84AE6BBB, $1CA081FE, $942B08F9,
$58684870, $19FD458F, $876CDE94, $B7F87B52, $23D373AB, $E2024B72, $578F1FE3, $2AAB5566,
$0728EBB2, $03C2B52F, $9A7BC586, $A50837D3, $F2872830, $B2A5BF23, $BA6A0302, $5C8216ED,
$2B1CCF8A, $92B479A7, $F0F207F3, $A1E2694E, $CDF4DA65, $D5BE0506, $1F6234D1, $8AFEA6C4,
$9D532E34, $A055F3A2, $32E18A05, $75EBF6A4, $39EC830B, $AAEF6040, $069F715E, $51106EBD,
$F98A213E, $3D06DD96, $AE053EDD, $46BDE64D, $B58D5491, $055DC471, $6FD40604, $FF155060,
$24FB9819, $97E9BDD6, $CC434089, $779ED967, $BD42E8B0, $888B8907, $385B19E7, $DBEEC879,
$470A7CA1, $E90F427C, $C91E84F8, $00000000, $83868009, $48ED2B32, $AC70111E, $4E725A6C,
$FBFF0EFD, $5638850F, $1ED5AE3D, $27392D36, $64D90F0A, $21A65C68, $D1545B9B, $3A2E3624,
$B1670A0C, $0FE75793, $D296EEB4, $9E919B1B, $4FC5C080, $A220DC61, $694B775A, $161A121C,
$0ABA93E2, $E52AA0C0, $43E0223C, $1D171B12, $0B0D090E, $ADC78BF2, $B9A8B62D, $C8A91E14,
$8519F157, $4C0775AF, $BBDD99EE, $FD607FA3, $9F2601F7, $BCF5725C, $C53B6644, $347EFB5B,
$7629438B, $DCC623CB, $68FCEDB6, $63F1E4B8, $CADC31D7, $10856342, $40229713, $2011C684,
$7D244A85, $F83DBBD2, $1132F9AE, $6DA129C7, $4B2F9E1D, $F330B2DC, $EC52860D, $D0E3C177,
$6C16B32B, $99B970A9, $FA489411, $2264E947, $C48CFCA8, $1A3FF0A0, $D82C7D56, $EF903322,
$C74E4987, $C1D138D9, $FEA2CA8C, $360BD498, $CF81F5A6, $28DE7AA5, $268EB7DA, $A4BFAD3F,
$E49D3A2C, $0D927850, $9BCC5F6A, $62467E54, $C2138DF6, $E8B8D890, $5EF7392E, $F5AFC382,
$BE805D9F, $7C93D069, $A92DD56F, $B31225CF, $3B99ACC8, $A77D1810, $6E639CE8, $7BBB3BDB,
$097826CD, $F418596E, $01B79AEC, $A89A4F83, $656E95E6, $7EE6FFAA, $08CFBC21, $E6E815EF,
$D99BE7BA, $CE366F4A, $D4099FEA, $D67CB029, $AFB2A431, $31233F2A, $3094A5C6, $C066A235,
$37BC4E74, $A6CA82FC, $B0D090E0, $15D8A733, $4A9804F1, $F7DAEC41, $0E50CD7F, $2FF69117,
$8DD64D76, $4DB0EF43, $544DAACC, $DF0496E4, $E3B5D19E, $1B886A4C, $B81F2CC1, $7F516546,
$04EA5E9D, $5D358C01, $737487FA, $2E410BFB, $5A1D67B3, $52D2DB92, $335610E9, $1347D66D,
$8C61D79A, $7A0CA137, $8E14F859, $893C13EB, $EE27A9CE, $35C961B7, $EDE51CE1, $3CB1477A,
$59DFD29C, $3F73F255, $79CE1418, $BF37C773, $EACDF753, $5BAAFD5F, $146F3DDF, $86DB4478,
$81F3AFCA, $3EC468B9, $2C342438, $5F40A3C2, $72C31D16, $0C25E2BC, $8B493C28, $41950DFF,
$7101A839, $DEB30C08, $9CE4B4D8, $90C15664, $6184CB7B, $70B632D5, $745C6C48, $4257B8D0
);

LastInverseTable: array [0..255] of longword = (
$00000052, $00000009, $0000006A, $000000D5, $00000030, $00000036, $000000A5, $00000038,
$000000BF, $00000040, $000000A3, $0000009E, $00000081, $000000F3, $000000D7, $000000FB,
$0000007C, $000000E3, $00000039, $00000082, $0000009B, $0000002F, $000000FF, $00000087,
$00000034, $0000008E, $00000043, $00000044, $000000C4, $000000DE, $000000E9, $000000CB,
$00000054, $0000007B, $00000094, $00000032, $000000A6, $000000C2, $00000023, $0000003D,
$000000EE, $0000004C, $00000095, $0000000B, $00000042, $000000FA, $000000C3, $0000004E,
$00000008, $0000002E, $000000A1, $00000066, $00000028, $000000D9, $00000024, $000000B2,
$00000076, $0000005B, $000000A2, $00000049, $0000006D, $0000008B, $000000D1, $00000025,
$00000072, $000000F8, $000000F6, $00000064, $00000086, $00000068, $00000098, $00000016,
$000000D4, $000000A4, $0000005C, $000000CC, $0000005D, $00000065, $000000B6, $00000092,
$0000006C, $00000070, $00000048, $00000050, $000000FD, $000000ED, $000000B9, $000000DA,
$0000005E, $00000015, $00000046, $00000057, $000000A7, $0000008D, $0000009D, $00000084,
$00000090, $000000D8, $000000AB, $00000000, $0000008C, $000000BC, $000000D3, $0000000A,
$000000F7, $000000E4, $00000058, $00000005, $000000B8, $000000B3, $00000045, $00000006,
$000000D0, $0000002C, $0000001E, $0000008F, $000000CA, $0000003F, $0000000F, $00000002,
$000000C1, $000000AF, $000000BD, $00000003, $00000001, $00000013, $0000008A, $0000006B,
$0000003A, $00000091, $00000011, $00000041, $0000004F, $00000067, $000000DC, $000000EA,
$00000097, $000000F2, $000000CF, $000000CE, $000000F0, $000000B4, $000000E6, $00000073,
$00000096, $000000AC, $00000074, $00000022, $000000E7, $000000AD, $00000035, $00000085,
$000000E2, $000000F9, $00000037, $000000E8, $0000001C, $00000075, $000000DF, $0000006E,
$00000047, $000000F1, $0000001A, $00000071, $0000001D, $00000029, $000000C5, $00000089,
$0000006F, $000000B7, $00000062, $0000000E, $000000AA, $00000018, $000000BE, $0000001B,
$000000FC, $00000056, $0000003E, $0000004B, $000000C6, $000000D2, $00000079, $00000020,
$0000009A, $000000DB, $000000C0, $000000FE, $00000078, $000000CD, $0000005A, $000000F4,
$0000001F, $000000DD, $000000A8, $00000033, $00000088, $00000007, $000000C7, $00000031,
$000000B1, $00000012, $00000010, $00000059, $00000027, $00000080, $000000EC, $0000005F,
$00000060, $00000051, $0000007F, $000000A9, $00000019, $000000B5, $0000004A, $0000000D,
$0000002D, $000000E5, $0000007A, $0000009F, $00000093, $000000C9, $0000009C, $000000EF,
$000000A0, $000000E0, $0000003B, $0000004D, $000000AE, $0000002A, $000000F5, $000000B0,
$000000C8, $000000EB, $000000BB, $0000003C, $00000083, $00000053, $00000099, $00000061,
$00000017, $0000002B, $00000004, $0000007E, $000000BA, $00000077, $000000D6, $00000026,
$000000E1, $00000069, $00000014, $00000063, $00000055, $00000021, $0000000C, $0000007D
);

procedure ExpandAESKeyForEncryption(const Key: TAESKey128; var ExpandedKey: TAESExpandedKey128);
var
I, J: integer;
T: longword;
W0, W1, W2, W3: longword;
begin
ExpandedKey[0] := PLongWord(@Key[0])^;
ExpandedKey[1] := PLongWord(@Key[4])^;
ExpandedKey[2] := PLongWord(@Key[8])^;
ExpandedKey[3] := PLongWord(@Key[12])^;
I := 0; J := 1;
repeat
T := (ExpandedKey[I + 3] shl 24) or (ExpandedKey[I + 3] shr 8);
W0 := LastForwardTable[Byte(T)]; W1 := LastForwardTable[Byte(T shr 8)];
W2 := LastForwardTable[Byte(T shr 16)]; W3 := LastForwardTable[Byte(T shr 24)];
ExpandedKey[I + 4] := ExpandedKey xor
(W0 xor ((W1 shl 8) or (W1 shr 24)) xor
((W2 shl 16) or (W2 shr 16)) xor ((W3 shl 24) or (W3 shr 8))) xor Rcon[J];
Inc(J);
ExpandedKey[I + 5] := ExpandedKey[I + 1] xor ExpandedKey[I + 4];
ExpandedKey[I + 6] := ExpandedKey[I + 2] xor ExpandedKey[I + 5];
ExpandedKey[I + 7] := ExpandedKey[I + 3] xor ExpandedKey[I + 6];
Inc(I, 4);
until I >= 40;
end;

procedure ExpandAESKeyForEncryption(const Key: TAESKey192; var ExpandedKey: TAESExpandedKey192); overload;
var
I, J: integer;
T: longword;
W0, W1, W2, W3: longword;
begin
ExpandedKey[0] := PLongWord(@Key[0])^;
ExpandedKey[1] := PLongWord(@Key[4])^;
ExpandedKey[2] := PLongWord(@Key[8])^;
ExpandedKey[3] := PLongWord(@Key[12])^;
ExpandedKey[4] := PLongWord(@Key[16])^;
ExpandedKey[5] := PLongWord(@Key[20])^;
I := 0; J := 1;
repeat
T := (ExpandedKey[I + 5] shl 24) or (ExpandedKey[I + 5] shr 8);
W0 := LastForwardTable[Byte(T)]; W1 := LastForwardTable[Byte(T shr 8)];
W2 := LastForwardTable[Byte(T shr 16)]; W3 := LastForwardTable[Byte(T shr 24)];
ExpandedKey[I + 6] := ExpandedKey xor
(W0 xor ((W1 shl 8) or (W1 shr 24)) xor
((W2 shl 16) or (W2 shr 16)) xor ((W3 shl 24) or (W3 shr 8))) xor Rcon[J];
Inc(J);
ExpandedKey[I + 7] := ExpandedKey[I + 1] xor ExpandedKey[I + 6];
ExpandedKey[I + 8] := ExpandedKey[I + 2] xor ExpandedKey[I + 7];
ExpandedKey[I + 9] := ExpandedKey[I + 3] xor ExpandedKey[I + 8];
ExpandedKey[I + 10] := ExpandedKey[I + 4] xor ExpandedKey[I + 9];
ExpandedKey[I + 11] := ExpandedKey[I + 5] xor ExpandedKey[I + 10];
Inc(I, 6);
until I >= 46;
end;

procedure ExpandAESKeyForEncryption(const Key: TAESKey256; var ExpandedKey: TAESExpandedKey256); overload;
var
I, J: integer;
T: longword;
W0, W1, W2, W3: longword;
begin
ExpandedKey[0] := PLongWord(@Key[0])^;
ExpandedKey[1] := PLongWord(@Key[4])^;
ExpandedKey[2] := PLongWord(@Key[8])^;
ExpandedKey[3] := PLongWord(@Key[12])^;
ExpandedKey[4] := PLongWord(@Key[16])^;
ExpandedKey[5] := PLongWord(@Key[20])^;
ExpandedKey[6] := PLongWord(@Key[24])^;
ExpandedKey[7] := PLongWord(@Key[28])^;
I := 0; J := 1;
repeat
T := (ExpandedKey[I + 7] shl 24) or (ExpandedKey[I + 7] shr 8);
W0 := LastForwardTable[Byte(T)]; W1 := LastForwardTable[Byte(T shr 8)];
W2 := LastForwardTable[Byte(T shr 16)]; W3 := LastForwardTable[Byte(T shr 24)];
ExpandedKey[I + 8] := ExpandedKey xor
(W0 xor ((W1 shl 8) or (W1 shr 24)) xor
((W2 shl 16) or (W2 shr 16)) xor ((W3 shl 24) or (W3 shr 8))) xor Rcon[J];
Inc(J);
ExpandedKey[I + 9] := ExpandedKey[I + 1] xor ExpandedKey[I + 8];
ExpandedKey[I + 10] := ExpandedKey[I + 2] xor ExpandedKey[I + 9];
ExpandedKey[I + 11] := ExpandedKey[I + 3] xor ExpandedKey[I + 10];
W0 := LastForwardTable[Byte(ExpandedKey[I + 11])];
W1 := LastForwardTable[Byte(ExpandedKey[I + 11] shr 8)];
W2 := LastForwardTable[Byte(ExpandedKey[I + 11] shr 16)];
W3 := LastForwardTable[Byte(ExpandedKey[I + 11] shr 24)];
ExpandedKey[I + 12] := ExpandedKey[I + 4] xor
(W0 xor ((W1 shl 8) or (W1 shr 24)) xor
((W2 shl 16) or (W2 shr 16)) xor ((W3 shl 24) or (W3 shr 8)));
ExpandedKey[I + 13] := ExpandedKey[I + 5] xor ExpandedKey[I + 12];
ExpandedKey[I + 14] := ExpandedKey[I + 6] xor ExpandedKey[I + 13];
ExpandedKey[I + 15] := ExpandedKey[I + 7] xor ExpandedKey[I + 14];
Inc(I, 8);
until I >= 52;
end;

procedure EncryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey128;
var OutBuf: TAESBuffer);
var
T0, T1: array [0..3] of longword;
W0, W1, W2, W3: longword;
begin
// initializing
T0[0] := PLongWord(@InBuf[0])^ xor Key[0];
T0[1] := PLongWord(@InBuf[4])^ xor Key[1];
T0[2] := PLongWord(@InBuf[8])^ xor Key[2];
T0[3] := PLongWord(@InBuf[12])^ xor Key[3];
// performing transformation 9 times
// round 1
W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[4];
W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[5];
W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[6];
W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[7];
// round 2
W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[8];
W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[9];
W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[10];
W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[11];
// round 3
W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[12];
W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[13];
W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[14];
W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[15];
// round 4
W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[16];
W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[17];
W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[18];
W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[19];
// round 5
W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[20];
W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[21];
W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[22];
W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[23];
// round 6
W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[24];
W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[25];
W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[26];
W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[27];
// round 7
W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[28];
W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[29];
W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[30];
W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[31];
// round 8
W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[32];
W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[33];
W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[34];
W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[35];
// round 9
W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[36];
W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[37];
W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[38];
W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[39];
// last round of transformations
W0 := LastForwardTable[Byte(T1[0])]; W1 := LastForwardTable[Byte(T1[1] shr 8)];
W2 := LastForwardTable[Byte(T1[2] shr 16)]; W3 := LastForwardTable[Byte(T1[3] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[40];
W0 := LastForwardTable[Byte(T1[1])]; W1 := LastForwardTable[Byte(T1[2] shr 8)];
W2 := LastForwardTable[Byte(T1[3] shr 16)]; W3 := LastForwardTable[Byte(T1[0] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[41];
W0 := LastForwardTable[Byte(T1[2])]; W1 := LastForwardTable[Byte(T1[3] shr 8)];
W2 := LastForwardTable[Byte(T1[0] shr 16)]; W3 := LastForwardTable[Byte(T1[1] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[42];
W0 := LastForwardTable[Byte(T1[3])]; W1 := LastForwardTable[Byte(T1[0] shr 8)];
W2 := LastForwardTable[Byte(T1[1] shr 16)]; W3 := LastForwardTable[Byte(T1[2] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[43];
// finalizing
PLongWord(@OutBuf[0])^ := T0[0]; PLongWord(@OutBuf[4])^ := T0[1];
PLongWord(@OutBuf[8])^ := T0[2]; PLongWord(@OutBuf[12])^ := T0[3];
end;

procedure EncryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey192;
var OutBuf: TAESBuffer);
var
T0, T1: array [0..3] of longword;
W0, W1, W2, W3: longword;
begin
// initializing
T0[0] := PLongWord(@InBuf[0])^ xor Key[0];
T0[1] := PLongWord(@InBuf[4])^ xor Key[1];
T0[2] := PLongWord(@InBuf[8])^ xor Key[2];
T0[3] := PLongWord(@InBuf[12])^ xor Key[3];
// performing transformation 11 times
// round 1
W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[4];
W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[5];
W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[6];
W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[7];
// round 2
W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[8];
W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[9];
W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[10];
W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[11];
// round 3
W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[12];
W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[13];
W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[14];
W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[15];
// round 4
W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[16];
W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[17];
W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[18];
W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[19];
// round 5
W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[20];
W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[21];
W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[22];
W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[23];
// round 6
W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[24];
W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[25];
W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[26];
W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[27];
// round 7
W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[28];
W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[29];
W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[30];
W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[31];
// round 8
W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[32];
W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[33];
W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[34];
W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[35];
// round 9
W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[36];
W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[37];
W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[38];
W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[39];
// round 10
W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[40];
W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[41];
W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[42];
W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[43];
// round 11
W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[44];
W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[45];
W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[46];
W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[47];
// last round of transformations
W0 := LastForwardTable[Byte(T1[0])]; W1 := LastForwardTable[Byte(T1[1] shr 8)];
W2 := LastForwardTable[Byte(T1[2] shr 16)]; W3 := LastForwardTable[Byte(T1[3] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[48];
W0 := LastForwardTable[Byte(T1[1])]; W1 := LastForwardTable[Byte(T1[2] shr 8)];
W2 := LastForwardTable[Byte(T1[3] shr 16)]; W3 := LastForwardTable[Byte(T1[0] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[49];
W0 := LastForwardTable[Byte(T1[2])]; W1 := LastForwardTable[Byte(T1[3] shr 8)];
W2 := LastForwardTable[Byte(T1[0] shr 16)]; W3 := LastForwardTable[Byte(T1[1] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[50];
W0 := LastForwardTable[Byte(T1[3])]; W1 := LastForwardTable[Byte(T1[0] shr 8)];
W2 := LastForwardTable[Byte(T1[1] shr 16)]; W3 := LastForwardTable[Byte(T1[2] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[51];
// finalizing
PLongWord(@OutBuf[0])^ := T0[0]; PLongWord(@OutBuf[4])^ := T0[1];
PLongWord(@OutBuf[8])^ := T0[2]; PLongWord(@OutBuf[12])^ := T0[3];
end;

procedure EncryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey256;
var OutBuf: TAESBuffer);
var
T0, T1: array [0..3] of longword;
W0, W1, W2, W3: longword;
begin
// initializing
T0[0] := PLongWord(@InBuf[0])^ xor Key[0];
T0[1] := PLongWord(@InBuf[4])^ xor Key[1];
T0[2] := PLongWord(@InBuf[8])^ xor Key[2];
T0[3] := PLongWord(@InBuf[12])^ xor Key[3];
// performing transformation 13 times
// round 1
W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[4];
W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[5];
W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[6];
W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[7];
// round 2
W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[8];
W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[9];
W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[10];
W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[11];
// round 3
W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[12];
W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[13];
W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[14];
W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[15];
// round 4
W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[16];
W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[17];
W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[18];
W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[19];
// round 5
W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[20];
W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[21];
W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[22];
W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[23];
// round 6
W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[24];
W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[25];
W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[26];
W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[27];
// round 7
W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[28];
W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[29];
W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[30];
W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[31];
// round 8
W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[32];
W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[33];
W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[34];
W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[35];
// round 9
W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[36];
W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[37];
W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[38];
W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[39];
// round 10
W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[40];
W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[41];
W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[42];
W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[43];
// round 11
W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[44];
W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[45];
W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[46];
W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[47];
// round 12
W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[48];
W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[49];
W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[50];
W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[51];
// round 13
W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[52];
W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[53];
W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[54];
W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[55];
// last round of transformations
W0 := LastForwardTable[Byte(T1[0])]; W1 := LastForwardTable[Byte(T1[1] shr 8)];
W2 := LastForwardTable[Byte(T1[2] shr 16)]; W3 := LastForwardTable[Byte(T1[3] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[56];
W0 := LastForwardTable[Byte(T1[1])]; W1 := LastForwardTable[Byte(T1[2] shr 8)];
W2 := LastForwardTable[Byte(T1[3] shr 16)]; W3 := LastForwardTable[Byte(T1[0] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[57];
W0 := LastForwardTable[Byte(T1[2])]; W1 := LastForwardTable[Byte(T1[3] shr 8)];
W2 := LastForwardTable[Byte(T1[0] shr 16)]; W3 := LastForwardTable[Byte(T1[1] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[58];
W0 := LastForwardTable[Byte(T1[3])]; W1 := LastForwardTable[Byte(T1[0] shr 8)];
W2 := LastForwardTable[Byte(T1[1] shr 16)]; W3 := LastForwardTable[Byte(T1[2] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[59];
// finalizing
PLongWord(@OutBuf[0])^ := T0[0]; PLongWord(@OutBuf[4])^ := T0[1];
PLongWord(@OutBuf[8])^ := T0[2]; PLongWord(@OutBuf[12])^ := T0[3];
end;

procedure ExpandAESKeyForDecryption(var ExpandedKey: TAESExpandedKey128);
var
I: integer;
U, F2, F4, F8, F9: longword;
begin
for I := 1 to 9 do
begin
F9 := ExpandedKey[I * 4];
U := F9 and $80808080;
F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
U := F2 and $80808080;
F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
U := F4 and $80808080;
F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
F9 := F9 xor F8;
ExpandedKey[I * 4] := F2 xor F4 xor F8 xor
(((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
(((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
F9 := ExpandedKey[I * 4 + 1];
U := F9 and $80808080;
F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
U := F2 and $80808080;
F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
U := F4 and $80808080;
F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
F9 := F9 xor F8;
ExpandedKey[I * 4 + 1] := F2 xor F4 xor F8 xor
(((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
(((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
F9 := ExpandedKey[I * 4 + 2];
U := F9 and $80808080;
F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
U := F2 and $80808080;
F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
U := F4 and $80808080;
F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
F9 := F9 xor F8;
ExpandedKey[I * 4 + 2] := F2 xor F4 xor F8 xor
(((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
(((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
F9 := ExpandedKey[I * 4 + 3];
U := F9 and $80808080;
F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
U := F2 and $80808080;
F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
U := F4 and $80808080;
F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
F9 := F9 xor F8;
ExpandedKey[I * 4 + 3] := F2 xor F4 xor F8 xor
(((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
(((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
end;
end;

procedure ExpandAESKeyForDecryption(const Key: TAESKey128; var ExpandedKey: TAESExpandedKey128);
begin
ExpandAESKeyForEncryption(Key, ExpandedKey);
ExpandAESKeyForDecryption(ExpandedKey);
end;

procedure ExpandAESKeyForDecryption(var ExpandedKey: TAESExpandedKey192);
var
I: integer;
U, F2, F4, F8, F9: longword;
begin
for I := 1 to 11 do
begin
F9 := ExpandedKey[I * 4];
U := F9 and $80808080;
F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
U := F2 and $80808080;
F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
U := F4 and $80808080;
F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
F9 := F9 xor F8;
ExpandedKey[I * 4] := F2 xor F4 xor F8 xor
(((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
(((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
F9 := ExpandedKey[I * 4 + 1];
U := F9 and $80808080;
F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
U := F2 and $80808080;
F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
U := F4 and $80808080;
F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
F9 := F9 xor F8;
ExpandedKey[I * 4 + 1] := F2 xor F4 xor F8 xor
(((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
(((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
F9 := ExpandedKey[I * 4 + 2];
U := F9 and $80808080;
F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
U := F2 and $80808080;
F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
U := F4 and $80808080;
F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
F9 := F9 xor F8;
ExpandedKey[I * 4 + 2] := F2 xor F4 xor F8 xor
(((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
(((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
F9 := ExpandedKey[I * 4 + 3];
U := F9 and $80808080;
F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
U := F2 and $80808080;
F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
U := F4 and $80808080;
F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
F9 := F9 xor F8;
ExpandedKey[I * 4 + 3] := F2 xor F4 xor F8 xor
(((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
(((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
end;
end;

procedure ExpandAESKeyForDecryption(const Key: TAESKey192; var ExpandedKey: TAESExpandedKey192);
begin
ExpandAESKeyForEncryption(Key, ExpandedKey);
ExpandAESKeyForDecryption(ExpandedKey);
end;

procedure ExpandAESKeyForDecryption(var ExpandedKey: TAESExpandedKey256);
var
I: integer;
U, F2, F4, F8, F9: longword;
begin
for I := 1 to 13 do
begin
F9 := ExpandedKey[I * 4];
U := F9 and $80808080;
F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
U := F2 and $80808080;
F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
U := F4 and $80808080;
F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
F9 := F9 xor F8;
ExpandedKey[I * 4] := F2 xor F4 xor F8 xor
(((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
(((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
F9 := ExpandedKey[I * 4 + 1];
U := F9 and $80808080;
F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
U := F2 and $80808080;
F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
U := F4 and $80808080;
F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
F9 := F9 xor F8;
ExpandedKey[I * 4 + 1] := F2 xor F4 xor F8 xor
(((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
(((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
F9 := ExpandedKey[I * 4 + 2];
U := F9 and $80808080;
F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
U := F2 and $80808080;
F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
U := F4 and $80808080;
F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
F9 := F9 xor F8;
ExpandedKey[I * 4 + 2] := F2 xor F4 xor F8 xor
(((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
(((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
F9 := ExpandedKey[I * 4 + 3];
U := F9 and $80808080;
F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
U := F2 and $80808080;
F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
U := F4 and $80808080;
F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
F9 := F9 xor F8;
ExpandedKey[I * 4 + 3] := F2 xor F4 xor F8 xor
(((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
(((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
end;
end;

procedure ExpandAESKeyForDecryption(const Key: TAESKey256; var ExpandedKey: TAESExpandedKey256);
begin
ExpandAESKeyForEncryption(Key, ExpandedKey);
ExpandAESKeyForDecryption(ExpandedKey);
end;

procedure DecryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey128;
var OutBuf: TAESBuffer);
var
T0, T1: array [0..3] of longword;
W0, W1, W2, W3: longword;
begin
// initializing
T0[0] := PLongWord(@InBuf[0])^ xor Key[40];
T0[1] := PLongWord(@InBuf[4])^ xor Key[41];
T0[2] := PLongWord(@InBuf[8])^ xor Key[42];
T0[3] := PLongWord(@InBuf[12])^ xor Key[43];
// performing transformations 9 times
// round 1
W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[36];
W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[37];
W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[38];
W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[39];
// round 2
W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[32];
W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[33];
W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[34];
W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[35];
// round 3
W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[28];
W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[29];
W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[30];
W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[31];
// round 4
W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[24];
W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[25];
W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[26];
W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[27];
// round 5
W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[20];
W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[21];
W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[22];
W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[23];
// round 6
W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[16];
W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[17];
W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[18];
W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[19];
// round 7
W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[12];
W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[13];
W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[14];
W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[15];
// round 8
W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[8];
W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[9];
W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[10];
W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[11];
// round 9
W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[4];
W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[5];
W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[6];
W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[7];
// last round of transformations
W0 := LastInverseTable[Byte(T1[0])]; W1 := LastInverseTable[Byte(T1[3] shr 8)];
W2 := LastInverseTable[Byte(T1[2] shr 16)]; W3 := LastInverseTable[Byte(T1[1] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[0];
W0 := LastInverseTable[Byte(T1[1])]; W1 := LastInverseTable[Byte(T1[0] shr 8)];
W2 := LastInverseTable[Byte(T1[3] shr 16)]; W3 := LastInverseTable[Byte(T1[2] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[1];
W0 := LastInverseTable[Byte(T1[2])]; W1 := LastInverseTable[Byte(T1[1] shr 8)];
W2 := LastInverseTable[Byte(T1[0] shr 16)]; W3 := LastInverseTable[Byte(T1[3] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[2];
W0 := LastInverseTable[Byte(T1[3])]; W1 := LastInverseTable[Byte(T1[2] shr 8)];
W2 := LastInverseTable[Byte(T1[1] shr 16)]; W3 := LastInverseTable[Byte(T1[0] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[3];
// finalizing
PLongWord(@OutBuf[0])^ := T0[0]; PLongWord(@OutBuf[4])^ := T0[1];
PLongWord(@OutBuf[8])^ := T0[2]; PLongWord(@OutBuf[12])^ := T0[3];
end;

procedure DecryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey192;
var OutBuf: TAESBuffer);
var
T0, T1: array [0..3] of longword;
W0, W1, W2, W3: longword;
begin
// initializing
T0[0] := PLongWord(@InBuf[0])^ xor Key[48];
T0[1] := PLongWord(@InBuf[4])^ xor Key[49];
T0[2] := PLongWord(@InBuf[8])^ xor Key[50];
T0[3] := PLongWord(@InBuf[12])^ xor Key[51];
// performing transformations 11 times
// round 1
W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[44];
W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[45];
W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[46];
W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[47];
// round 2
W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[40];
W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[41];
W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[42];
W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[43];
// round 3
W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[36];
W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[37];
W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[38];
W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[39];
// round 4
W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[32];
W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[33];
W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[34];
W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[35];
// round 5
W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[28];
W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[29];
W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[30];
W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[31];
// round 6
W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[24];
W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[25];
W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[26];
W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[27];
// round 7
W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[20];
W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[21];
W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[22];
W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[23];
// round 8
W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[16];
W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[17];
W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[18];
W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[19];
// round 9
W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[12];
W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[13];
W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[14];
W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[15];
// round 10
W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[8];
W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[9];
W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[10];
W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[11];
// round 11
W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[4];
W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[5];
W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[6];
W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[7];
// last round of transformations
W0 := LastInverseTable[Byte(T1[0])]; W1 := LastInverseTable[Byte(T1[3] shr 8)];
W2 := LastInverseTable[Byte(T1[2] shr 16)]; W3 := LastInverseTable[Byte(T1[1] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[0];
W0 := LastInverseTable[Byte(T1[1])]; W1 := LastInverseTable[Byte(T1[0] shr 8)];
W2 := LastInverseTable[Byte(T1[3] shr 16)]; W3 := LastInverseTable[Byte(T1[2] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[1];
W0 := LastInverseTable[Byte(T1[2])]; W1 := LastInverseTable[Byte(T1[1] shr 8)];
W2 := LastInverseTable[Byte(T1[0] shr 16)]; W3 := LastInverseTable[Byte(T1[3] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[2];
W0 := LastInverseTable[Byte(T1[3])]; W1 := LastInverseTable[Byte(T1[2] shr 8)];
W2 := LastInverseTable[Byte(T1[1] shr 16)]; W3 := LastInverseTable[Byte(T1[0] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[3];
// finalizing
PLongWord(@OutBuf[0])^ := T0[0]; PLongWord(@OutBuf[4])^ := T0[1];
PLongWord(@OutBuf[8])^ := T0[2]; PLongWord(@OutBuf[12])^ := T0[3];
end;

procedure DecryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey256;
var OutBuf: TAESBuffer);
var
T0, T1: array [0..3] of longword;
W0, W1, W2, W3: longword;
begin
// initializing
T0[0] := PLongWord(@InBuf[0])^ xor Key[56];
T0[1] := PLongWord(@InBuf[4])^ xor Key[57];
T0[2] := PLongWord(@InBuf[8])^ xor Key[58];
T0[3] := PLongWord(@InBuf[12])^ xor Key[59];
// performing transformations 13 times
// round 1
W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[52];
W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[53];
W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[54];
W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[55];
// round 2
W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[48];
W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[49];
W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[50];
W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[51];
// round 3
W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[44];
W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[45];
W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[46];
W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[47];
// round 4
W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[40];
W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[41];
W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[42];
W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[43];
// round 5
W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[36];
W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[37];
W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[38];
W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[39];
// round 6
W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[32];
W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[33];
W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[34];
W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[35];
// round 7
W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[28];
W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[29];
W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[30];
W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[31];
// round 8
W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[24];
W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[25];
W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[26];
W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[27];
// round 9
W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[20];
W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[21];
W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[22];
W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[23];
// round 10
W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[16];
W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[17];
W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[18];
W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[19];
// round 11
W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[12];
W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[13];
W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[14];
W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[15];
// round 12
W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[8];
W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[9];
W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[10];
W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[11];
// round 13
W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[4];
W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[5];
W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[6];
W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[7];
// last round of transformations
W0 := LastInverseTable[Byte(T1[0])]; W1 := LastInverseTable[Byte(T1[3] shr 8)];
W2 := LastInverseTable[Byte(T1[2] shr 16)]; W3 := LastInverseTable[Byte(T1[1] shr 24)];
T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[0];
W0 := LastInverseTable[Byte(T1[1])]; W1 := LastInverseTable[Byte(T1[0] shr 8)];
W2 := LastInverseTable[Byte(T1[3] shr 16)]; W3 := LastInverseTable[Byte(T1[2] shr 24)];
T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[1];
W0 := LastInverseTable[Byte(T1[2])]; W1 := LastInverseTable[Byte(T1[1] shr 8)];
W2 := LastInverseTable[Byte(T1[0] shr 16)]; W3 := LastInverseTable[Byte(T1[3] shr 24)];
T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[2];
W0 := LastInverseTable[Byte(T1[3])]; W1 := LastInverseTable[Byte(T1[2] shr 8)];
W2 := LastInverseTable[Byte(T1[1] shr 16)]; W3 := LastInverseTable[Byte(T1[0] shr 24)];
T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
xor ((W3 shl 24) or (W3 shr 8))) xor Key[3];
// finalizing
PLongWord(@OutBuf[0])^ := T0[0]; PLongWord(@OutBuf[4])^ := T0[1];
PLongWord(@OutBuf[8])^ := T0[2]; PLongWord(@OutBuf[12])^ := T0[3];
end;

// Stream encryption routines (ECB mode)

procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
const Key: TAESKey128; Dest: TStream);
var
ExpandedKey: TAESExpandedKey128;
begin
ExpandAESKeyForEncryption(Key, ExpandedKey);
EncryptAESStreamECB(Source, Count, ExpandedKey, Dest);
end;

procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
const Key: TAESKey192; Dest: TStream);
var
ExpandedKey: TAESExpandedKey192;
begin
ExpandAESKeyForEncryption(Key, ExpandedKey);
EncryptAESStreamECB(Source, Count, ExpandedKey, Dest);
end;

procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
const Key: TAESKey256; Dest: TStream);
var
ExpandedKey: TAESExpandedKey256;
begin
ExpandAESKeyForEncryption(Key, ExpandedKey);
EncryptAESStreamECB(Source, Count, ExpandedKey, Dest);
end;

procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
const ExpandedKey: TAESExpandedKey128; Dest: TStream);
var
TempIn, TempOut: TAESBuffer;
Done: cardinal;
begin
if Count = 0 then
begin
Source.Position := 0;
Count := Source.Size;
end
else Count := Min(Count, Source.Size - Source.Position);
if Count = 0 then exit;
while Count >= SizeOf(TAESBuffer) do
begin
Done := Source.Read(TempIn, SizeOf(TempIn));
if Done < SizeOf(TempIn) then
raise EStreamError.Create(SReadError);
EncryptAES(TempIn, ExpandedKey, TempOut);
Done := Dest.Write(TempOut, SizeOf(TempOut));
if Done < SizeOf(TempOut) then
raise EStreamError.Create(SWriteError);
Dec(Count, SizeOf(TAESBuffer));
end;
if Count > 0 then
begin
Done := Source.Read(TempIn, Count);
if Done < Count then
raise EStreamError.Create(SReadError);
FillChar(TempIn[Count], SizeOf(TempIn) - Count, 0);
EncryptAES(TempIn, ExpandedKey, TempOut);
Done := Dest.Write(TempOut, SizeOf(TempOut));
if Done < SizeOf(TempOut) then
raise EStreamError.Create(SWriteError);
end;
end;

procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
const ExpandedKey: TAESExpandedKey192; Dest: TStream);
var
TempIn, TempOut: TAESBuffer;
Done: cardinal;
begin
if Count = 0 then
begin
Source.Position := 0;
Count := Source.Size;
end
else Count := Min(Count, Source.Size - Source.Position);
if Count = 0 then exit;
while Count >= SizeOf(TAESBuffer) do
begin
Done := Source.Read(TempIn, SizeOf(TempIn));
if Done < SizeOf(TempIn) then
raise EStreamError.Create(SReadError);
EncryptAES(TempIn, ExpandedKey, TempOut);
Done := Dest.Write(TempOut, SizeOf(TempOut));
if Done < SizeOf(TempOut) then
raise EStreamError.Create(SWriteError);
Dec(Count, SizeOf(TAESBuffer));
end;
if Count > 0 then
begin
Done := Source.Read(TempIn, Count);
if Done < Count then
raise EStreamError.Create(SReadError);
FillChar(TempIn[Count], SizeOf(TempIn) - Count, 0);
EncryptAES(TempIn, ExpandedKey, TempOut);
Done := Dest.Write(TempOut, SizeOf(TempOut));
if Done < SizeOf(TempOut) then
raise EStreamError.Create(SWriteError);
end;
end;

procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
const ExpandedKey: TAESExpandedKey256; Dest: TStream);
var
TempIn, TempOut: TAESBuffer;
Done: cardinal;
begin
if Count = 0 then
begin
Source.Position := 0;
Count := Source.Size;
end
else Count := Min(Count, Source.Size - Source.Position);
if Count = 0 then exit;
while Count >= SizeOf(TAESBuffer) do
begin
Done := Source.Read(TempIn, SizeOf(TempIn));
if Done < SizeOf(TempIn) then
raise EStreamError.Create(SReadError);
EncryptAES(TempIn, ExpandedKey, TempOut);
Done := Dest.Write(TempOut, SizeOf(TempOut));
if Done < SizeOf(TempOut) then
raise EStreamError.Create(SWriteError);
Dec(Count, SizeOf(TAESBuffer));
end;
if Count > 0 then
begin
Done := Source.Read(TempIn, Count);
if Done < Count then
raise EStreamError.Create(SReadError);
FillChar(TempIn[Count], SizeOf(TempIn) - Count, 0);
EncryptAES(TempIn, ExpandedKey, TempOut);
Done := Dest.Write(TempOut, SizeOf(TempOut));
if Done < SizeOf(TempOut) then
raise EStreamError.Create(SWriteError);
end;
end;

// Stream decryption routines (ECB mode)

procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
const Key: TAESKey128; Dest: TStream);
var
ExpandedKey: TAESExpandedKey128;
begin
ExpandAESKeyForDecryption(Key, ExpandedKey);
DecryptAESStreamECB(Source, Count, ExpandedKey, Dest);
end;

procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
const ExpandedKey: TAESExpandedKey128; Dest: TStream);
var
TempIn, TempOut: TAESBuffer;
Done: cardinal;
begin
if Count = 0 then
begin
Source.Position := 0;
Count := Source.Size;
end
else Count := Min(Count, Source.Size - Source.Position);
if Count = 0 then exit;
if (Count mod SizeOf(TAESBuffer)) > 0 then
raise EAESError.Create(SInvalidInBufSize);
while Count >= SizeOf(TAESBuffer) do
begin
Done := Source.Read(TempIn, SizeOf(TempIn));
if Done < SizeOf(TempIn) then
raise EStreamError.Create(SReadError);
DecryptAES(TempIn, ExpandedKey, TempOut);
Done := Dest.Write(TempOut, SizeOf(TempOut));
if Done < SizeOf(TempOut) then
raise EStreamError.Create(SWriteError);
Dec(Count, SizeOf(TAESBuffer));
end;
end;

procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
const Key: TAESKey192; Dest: TStream);
var
ExpandedKey: TAESExpandedKey192;
begin
ExpandAESKeyForDecryption(Key, ExpandedKey);
DecryptAESStreamECB(Source, Count, ExpandedKey, Dest);
end;

procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
const ExpandedKey: TAESExpandedKey192; Dest: TStream);
var
TempIn, TempOut: TAESBuffer;
Done: cardinal;
begin
if Count = 0 then
begin
Source.Position := 0;
Count := Source.Size;
end
else Count := Min(Count, Source.Size - Source.Position);
if Count = 0 then exit;
if (Count mod SizeOf(TAESBuffer)) > 0 then
raise EAESError.Create(SInvalidInBufSize);
while Count >= SizeOf(TAESBuffer) do
begin
Done := Source.Read(TempIn, SizeOf(TempIn));
if Done < SizeOf(TempIn) then
raise EStreamError.Create(SReadError);
DecryptAES(TempIn, ExpandedKey, TempOut);
Done := Dest.Write(TempOut, SizeOf(TempOut));
if Done < SizeOf(TempOut) then
raise EStreamError.Create(SWriteError);
Dec(Count, SizeOf(TAESBuffer));
end;
end;

procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
const Key: TAESKey256; Dest: TStream);
var
ExpandedKey: TAESExpandedKey256;
begin
ExpandAESKeyForDecryption(Key, ExpandedKey);
DecryptAESStreamECB(Source, Count, ExpandedKey, Dest);
end;

procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
const ExpandedKey: TAESExpandedKey256; Dest: TStream);
var
TempIn, TempOut: TAESBuffer;
Done: cardinal;
begin
if Count = 0 then
begin
Source.Position := 0;
Count := Source.Size;
end
else Count := Min(Count, Source.Size - Source.Position);
if Count = 0 then exit;
if (Count mod SizeOf(TAESBuffer)) > 0 then
raise EAESError.Create(SInvalidInBufSize);
while Count >= SizeOf(TAESBuffer) do
begin
Done := Source.Read(TempIn, SizeOf(TempIn));
if Done < SizeOf(TempIn) then
raise EStreamError.Create(SReadError);
DecryptAES(TempIn, ExpandedKey, TempOut);
Done := Dest.Write(TempOut, SizeOf(TempOut));
if Done < SizeOf(TempOut) then
raise EStreamError.Create(SWriteError);
Dec(Count, SizeOf(TAESBuffer));
end;
end;

// Stream encryption routines (CBC mode)

procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
const Key: TAESKey128; const InitVector: TAESBuffer; Dest: TStream);
var
ExpandedKey: TAESExpandedKey128;
begin
ExpandAESKeyForEncryption(Key, ExpandedKey);
EncryptAESStreamCBC(Source, Count, ExpandedKey, InitVector, Dest);
end;

procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
const ExpandedKey: TAESExpandedKey128; const InitVector: TAESBuffer;
Dest: TStream);
var
TempIn, TempOut, Vector: TAESBuffer;
Done: cardinal;
begin
if Count = 0 then
begin
Source.Position := 0;
Count := Source.Size;
end
else Count := Min(Count, Source.Size - Source.Position);
if Count = 0 then exit;
Vector := InitVector;
while Count >= SizeOf(TAESBuffer) do
begin
Done := Source.Read(TempIn, SizeOf(TempIn));
if Done < SizeOf(TempIn) then
raise EStreamError.Create(SReadError);
PLongWord(@TempIn[0])^ := PLongWord(@TempIn[0])^ xor PLongWord(@Vector[0])^;
PLongWord(@TempIn[4])^ := PLongWord(@TempIn[4])^ xor PLongWord(@Vector[4])^;
PLongWord(@TempIn[8])^ := PLongWord(@TempIn[8])^ xor PLongWord(@Vector[8])^;
PLongWord(@TempIn[12])^ := PLongWord(@TempIn[12])^ xor PLongWord(@Vector[12])^;
EncryptAES(TempIn, ExpandedKey, TempOut);
Done := Dest.Write(TempOut, SizeOf(TempOut));
if Done < SizeOf(TempOut) then
raise EStreamError.Create(SWriteError);
Vector := TempOut;
Dec(Count, SizeOf(TAESBuffer));
end;
if Count > 0 then
begin
Done := Source.Read(TempIn, Count);
if Done < Count then
raise EStreamError.Create(SReadError);
FillChar(TempIn[Count], SizeOf(TempIn) - Count, 0);
PLongWord(@TempIn[0])^ := PLongWord(@TempIn[0])^ xor PLongWord(@Vector[0])^;
PLongWord(@TempIn[4])^ := PLongWord(@TempIn[4])^ xor PLongWord(@Vector[4])^;
PLongWord(@TempIn[8])^ := PLongWord(@TempIn[8])^ xor PLongWord(@Vector[8])^;
PLongWord(@TempIn[12])^ := PLongWord(@TempIn[12])^ xor PLongWord(@Vector[12])^;
EncryptAES(TempIn, ExpandedKey, TempOut);
Done := Dest.Write(TempOut, SizeOf(TempOut));
if Done < SizeOf(TempOut) then
raise EStreamError.Create(SWriteError);
end;
end;

procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
const Key: TAESKey192; const InitVector: TAESBuffer; Dest: TStream);
var
ExpandedKey: TAESExpandedKey192;
begin
ExpandAESKeyForEncryption(Key, ExpandedKey);
EncryptAESStreamCBC(Source, Count, ExpandedKey, InitVector, Dest);
end;

procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
const ExpandedKey: TAESExpandedKey192; const InitVector: TAESBuffer;
Dest: TStream);
var
TempIn, TempOut, Vector: TAESBuffer;
Done: cardinal;
begin
if Count = 0 then
begin
Source.Position := 0;
Count := Source.Size;
end
else Count := Min(Count, Source.Size - Source.Position);
if Count = 0 then exit;
Vector := InitVector;
while Count >= SizeOf(TAESBuffer) do
begin
Done := Source.Read(TempIn, SizeOf(TempIn));
if Done < SizeOf(TempIn) then
raise EStreamError.Create(SReadError);
PLongWord(@TempIn[0])^ := PLongWord(@TempIn[0])^ xor PLongWord(@Vector[0])^;
PLongWord(@TempIn[4])^ := PLongWord(@TempIn[4])^ xor PLongWord(@Vector[4])^;
PLongWord(@TempIn[8])^ := PLongWord(@TempIn[8])^ xor PLongWord(@Vector[8])^;
PLongWord(@TempIn[12])^ := PLongWord(@TempIn[12])^ xor PLongWord(@Vector[12])^;
EncryptAES(TempIn, ExpandedKey, TempOut);
Done := Dest.Write(TempOut, SizeOf(TempOut));
if Done < SizeOf(TempOut) then
raise EStreamError.Create(SWriteError);
Vector := TempOut;
Dec(Count, SizeOf(TAESBuffer));
end;
if Count > 0 then
begin
Done := Source.Read(TempIn, Count);
if Done < Count then
raise EStreamError.Create(SReadError);
FillChar(TempIn[Count], SizeOf(TempIn) - Count, 0);
PLongWord(@TempIn[0])^ := PLongWord(@TempIn[0])^ xor PLongWord(@Vector[0])^;
PLongWord(@TempIn[4])^ := PLongWord(@TempIn[4])^ xor PLongWord(@Vector[4])^;
PLongWord(@TempIn[8])^ := PLongWord(@TempIn[8])^ xor PLongWord(@Vector[8])^;
PLongWord(@TempIn[12])^ := PLongWord(@TempIn[12])^ xor PLongWord(@Vector[12])^;
EncryptAES(TempIn, ExpandedKey, TempOut);
Done := Dest.Write(TempOut, SizeOf(TempOut));
if Done < SizeOf(TempOut) then
raise EStreamError.Create(SWriteError);
end;
end;

procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
const Key: TAESKey256; const InitVector: TAESBuffer; Dest: TStream);
var
ExpandedKey: TAESExpandedKey256;
begin
ExpandAESKeyForEncryption(Key, ExpandedKey);
EncryptAESStreamCBC(Source, Count, ExpandedKey, InitVector, Dest);
end;

procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
const ExpandedKey: TAESExpandedKey256; const InitVector: TAESBuffer;
Dest: TStream);
var
TempIn, TempOut, Vector: TAESBuffer;
Done: cardinal;
begin
if Count = 0 then
begin
Source.Position := 0;
Count := Source.Size;
end
else Count := Min(Count, Source.Size - Source.Position);
if Count = 0 then exit;
Vector := InitVector;
while Count >= SizeOf(TAESBuffer) do
begin
Done := Source.Read(TempIn, SizeOf(TempIn));
if Done < SizeOf(TempIn) then
raise EStreamError.Create(SReadError);
PLongWord(@TempIn[0])^ := PLongWord(@TempIn[0])^ xor PLongWord(@Vector[0])^;
PLongWord(@TempIn[4])^ := PLongWord(@TempIn[4])^ xor PLongWord(@Vector[4])^;
PLongWord(@TempIn[8])^ := PLongWord(@TempIn[8])^ xor PLongWord(@Vector[8])^;
PLongWord(@TempIn[12])^ := PLongWord(@TempIn[12])^ xor PLongWord(@Vector[12])^;
EncryptAES(TempIn, ExpandedKey, TempOut);
Done := Dest.Write(TempOut, SizeOf(TempOut));
if Done < SizeOf(TempOut) then
raise EStreamError.Create(SWriteError);
Vector := TempOut;
Dec(Count, SizeOf(TAESBuffer));
end;
if Count > 0 then
begin
Done := Source.Read(TempIn, Count);
if Done < Count then
raise EStreamError.Create(SReadError);
FillChar(TempIn[Count], SizeOf(TempIn) - Count, 0);
PLongWord(@TempIn[0])^ := PLongWord(@TempIn[0])^ xor PLongWord(@Vector[0])^;
PLongWord(@TempIn[4])^ := PLongWord(@TempIn[4])^ xor PLongWord(@Vector[4])^;
PLongWord(@TempIn[8])^ := PLongWord(@TempIn[8])^ xor PLongWord(@Vector[8])^;
PLongWord(@TempIn[12])^ := PLongWord(@TempIn[12])^ xor PLongWord(@Vector[12])^;
EncryptAES(TempIn, ExpandedKey, TempOut);
Done := Dest.Write(TempOut, SizeOf(TempOut));
if Done < SizeOf(TempOut) then
raise EStreamError.Create(SWriteError);
end;
end;

// Stream decryption routines (CBC mode)

procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
const Key: TAESKey128; const InitVector: TAESBuffer; Dest: TStream);
var
ExpandedKey: TAESExpandedKey128;
begin
ExpandAESKeyForDecryption(Key, ExpandedKey);
DecryptAESStreamCBC(Source, Count, ExpandedKey, InitVector, Dest);
end;

procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
const ExpandedKey: TAESExpandedKey128; const InitVector: TAESBuffer;
Dest: TStream);
var
TempIn, TempOut: TAESBuffer;
Vector1, Vector2: TAESBuffer;
Done: cardinal;
begin
if Count = 0 then
begin
Source.Position := 0;
Count := Source.Size;
end
else Count := Min(Count, Source.Size - Source.Position);
if Count = 0 then exit;
if (Count mod SizeOf(TAESBuffer)) > 0 then
raise EAESError.Create(SInvalidInBufSize);
Vector1 := InitVector;
while Count >= SizeOf(TAESBuffer) do
begin
Done := Source.Read(TempIn, SizeOf(TempIn));
if Done < SizeOf(TempIn) then
raise EStreamError(SReadError);
Vector2 := TempIn;
DecryptAES(TempIn, ExpandedKey, TempOut);
PLongWord(@TempOut[0])^ := PLongWord(@TempOut[0])^ xor PLongWord(@Vector1[0])^;
PLongWord(@TempOut[4])^ := PLongWord(@TempOut[4])^ xor PLongWord(@Vector1[4])^;
PLongWord(@TempOut[8])^ := PLongWord(@TempOut[8])^ xor PLongWord(@Vector1[8])^;
PLongWord(@TempOut[12])^ := PLongWord(@TempOut[12])^ xor PLongWord(@Vector1[12])^;
Done := Dest.Write(TempOut, SizeOf(TempOut));
if Done < SizeOf(TempOut) then
raise EStreamError(SWriteError);
Vector1 := Vector2;
Dec(Count, SizeOf(TAESBuffer));
end;
end;

procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
const Key: TAESKey192; const InitVector: TAESBuffer; Dest: TStream);
var
ExpandedKey: TAESExpandedKey192;
begin
ExpandAESKeyForDecryption(Key, ExpandedKey);
DecryptAESStreamCBC(Source, Count, ExpandedKey, InitVector, Dest);
end;

procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
const ExpandedKey: TAESExpandedKey192; const InitVector: TAESBuffer;
Dest: TStream);
var
TempIn, TempOut: TAESBuffer;
Vector1, Vector2: TAESBuffer;
Done: cardinal;
begin
if Count = 0 then
begin
Source.Position := 0;
Count := Source.Size;
end
else Count := Min(Count, Source.Size - Source.Position);
if Count = 0 then exit;
if (Count mod SizeOf(TAESBuffer)) > 0 then
raise EAESError.Create(SInvalidInBufSize);
Vector1 := InitVector;
while Count >= SizeOf(TAESBuffer) do
begin
Done := Source.Read(TempIn, SizeOf(TempIn));
if Done < SizeOf(TempIn) then
raise EStreamError(SReadError);
Vector2 := TempIn;
DecryptAES(TempIn, ExpandedKey, TempOut);
PLongWord(@TempOut[0])^ := PLongWord(@TempOut[0])^ xor PLongWord(@Vector1[0])^;
PLongWord(@TempOut[4])^ := PLongWord(@TempOut[4])^ xor PLongWord(@Vector1[4])^;
PLongWord(@TempOut[8])^ := PLongWord(@TempOut[8])^ xor PLongWord(@Vector1[8])^;
PLongWord(@TempOut[12])^ := PLongWord(@TempOut[12])^ xor PLongWord(@Vector1[12])^;
Done := Dest.Write(TempOut, SizeOf(TempOut));
if Done < SizeOf(TempOut) then
raise EStreamError(SWriteError);
Vector1 := Vector2;
Dec(Count, SizeOf(TAESBuffer));
end;
end;

procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
const Key: TAESKey256; const InitVector: TAESBuffer; Dest: TStream);
var
ExpandedKey: TAESExpandedKey256;
begin
ExpandAESKeyForDecryption(Key, ExpandedKey);
DecryptAESStreamCBC(Source, Count, ExpandedKey, InitVector, Dest);
end;

procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
const ExpandedKey: TAESExpandedKey256; const InitVector: TAESBuffer;
Dest: TStream);
var
TempIn, TempOut: TAESBuffer;
Vector1, Vector2: TAESBuffer;
Done: cardinal;
begin
if Count = 0 then
begin
Source.Position := 0;
Count := Source.Size;
end
else Count := Min(Count, Source.Size - Source.Position);
if Count = 0 then exit;
if (Count mod SizeOf(TAESBuffer)) > 0 then
raise EAESError.Create(SInvalidInBufSize);
Vector1 := InitVector;
while Count >= SizeOf(TAESBuffer) do
begin
Done := Source.Read(TempIn, SizeOf(TempIn));
if Done < SizeOf(TempIn) then
raise EStreamError(SReadError);
Vector2 := TempIn;
DecryptAES(TempIn, ExpandedKey, TempOut);
PLongWord(@TempOut[0])^ := PLongWord(@TempOut[0])^ xor PLongWord(@Vector1[0])^;
PLongWord(@TempOut[4])^ := PLongWord(@TempOut[4])^ xor PLongWord(@Vector1[4])^;
PLongWord(@TempOut[8])^ := PLongWord(@TempOut[8])^ xor PLongWord(@Vector1[8])^;
PLongWord(@TempOut[12])^ := PLongWord(@TempOut[12])^ xor PLongWord(@Vector1[12])^;
Done := Dest.Write(TempOut, SizeOf(TempOut));
if Done < SizeOf(TempOut) then
raise EStreamError(SWriteError);
Vector1 := Vector2;
Dec(Count, SizeOf(TAESBuffer));
end;
end;

end.
 
AES,我的单元用了很多次,都可以,你重新下载吧。。。
 
不是的.上面那函数是自己写的.如果使用流对象,那么是OK的.所以单元应该没问题
 
这么说吧.我有一个文件.c"/pa.rar,是加密过的.如果用下面的方法,那么解密正常,RAR能正确打开.
procedure TForm1.Button2Click(Sender: TObject);
var
Key: TAESKey128;
// ExpandedKey: TAESExpandedKey128;
MyStreamIn, MyStreamOut: TMemoryStream;
dwTime: DWORD;
s: string;
i: integer;
begin
// Prepare key...
FillChar(Key, SizeOf(Key), 0);
Move(PChar(strKey)^, Key, Min(SizeOf(Key), Length(strKey)));

s := '';
for i := Low(Key) to High(Key) do s := s + IntToHex(Key, 2);
WriteDat('key:' + s);



// ExpandAESKeyForEncryption(Key, ExpandedKey);

// s := '';
// for i := Low(ExpandedKey) to High(ExpandedKey) do s := s + IntToHex(ExpandedKey, 2);
// WriteDat('ExpandedKey:' + s);

MyStreamIn := TMemoryStream.Create;
MyStreamOut := TMemoryStream.Create;
MyStreamIn.LoadFromFile('c:/p1.rar');
//MyStreamIn.Position:=0;
dwTime := GetTickCount;
DecryptAESStreamECB(MyStreamIn, MyStreamIn.Size, Key, MyStreamOut);
dwTime := GetTickCount - dwTime;
MyStreamOut.SaveToFile('c:/p2.rar');
MyStreamIn.Free;
MyStreamOut.Free;
ShowMessage(IntToStr(dwTime));
end;

如果使用上面自己写的函数,则结果不正确
procedure TForm1.Button4Click(Sender: TObject);
var
MyStreamIn, MyStreamOut: TMemoryStream;
pBufIn, pBufOut: Pchar;
destLen: Longint;
dwTime: DWORD;
begin

MyStreamIn := TMemoryStream.Create;
MyStreamOut := TMemoryStream.Create;
MyStreamIn.LoadFromFile('c:/p1.rar');

GetMem(pBufOut, 1024 * 1024);
GetMem(pBufIn, 1024 * 1024);
MyStreamIn.Position := 0;
MyStreamIn.Read(pBufIn^, MyStreamIn.Size);

dwTime := GetTickCount;
AESDecryptBuffer128(pBufOut, @destLen, pBufIn, MyStreamIn.Size, strKey);
dwTime := GetTickCount - dwTime;
MyStreamOut.Write(pBufOut^, destLen);


FreeMem(pBufIn);
FreeMem(pBufOut);
MyStreamOut.SaveToFile('c:/p2.rar');
MyStreamIn.Free;
MyStreamOut.Free;
ShowMessage(IntToStr(dwTime));
end;
 
其实两者都是最终调用DecryptAES函数.我把信息打印出来.如下:
下面是调用流解密方式的LOG:

key:64666773646667736466676964727574
ExpandedKey:7367666473676664696766647475726430F5FB2543929D412AF5FB255E808941B3AD3680F03FABC1DACA50E4844AD9A5B5F2E0B145CD4B709F071B941B4DC231725D039C379048ECA8975378B3DA91494930540D7EA01CE1D6374F9965EDDED0397D013047DD1DD191EA5248F4078C987FC2C414381FD9C5A9F58B8D5DF20715268E4D511E919494B7641F19EA96180CD809DDE7C698497371FC566A9B6A4E66EB1DDFFE2D85968D5C79C0E7C7138E81
TempIn:BD8C58D11EADC663857D16BB0620B093
TempOut:526172211A0700CF907300000D000000
TempIn:8C8ADBDF02770BC282F4C1933A8DC8AA
TempOut:00000000542974208027003F00000070
TempIn:A980970DE09DF0B4E66E5DBE64F0D604
TempOut:0000000256EF4432AC89E5341D330700
TempIn:F2EBBB5F7F05A800DF014DBFB48EBD5A
TempOut:200000006C6F672E74787409540C93E4
TempIn:F09BE4DDA75C24F2E213F7A97ABAB205
TempOut:CEFE0EC1E612E172B5C060C80B4C4150
TempIn:2E6FDD9A2DD50AFE334B96577AA5C317
TempOut:77D6B62D2DBD6F60BF3C7F25F57EC686
TempIn:B7AD2375B39821B1524EBF11C2B9C4D1
TempOut:76BA2C2554230DA2ADFDF153011A2B51
TempIn:B84EB49A4539DEE6B24AB60496B8AB63
TempOut:EC3F9A7F59DA181FE7CAC43D7B004007
TempIn:8C3C3FDC09B02B16E483EDEB274999CF
TempOut:00000000000000000000000000000000

下面是调用自定义函数的LOG:
key:64666773646667736466676964727574
ExpandedKey:7367666473676664696766647475726430F5FB2543929D412AF5FB255E808941B3AD3680F03FABC1DACA50E4844AD9A5B5F2E0B145CD4B709F071B941B4DC231725D039C379048ECA8975378B3DA91494930540D7EA01CE1D6374F9965EDDED0397D013047DD1DD191EA5248F4078C987FC2C414381FD9C5A9F58B8D5DF20715268E4D511E919494B7641F19EA96180CD809DDE7C698497371FC566A9B6A4E66EB1DDFFE2D85968D5C79C0E7C7138E81
TempIn:BD8C58D11EADC663857D16BB0620B093
TempOut:CE4737CD422DA859C8BC5EAB4BCB8688
TempIn:8C8ADBDF02770BC282F4C1933A8DC8AA
TempOut:B66ADDA9B970A8D9F458F638BFE0B05D
TempIn:A980970DE09DF0B4E66E5DBE64F0D604
TempOut:B9CA9643299A58C3210A96A3BF25F382
TempIn:F2EBBB5F7F05A800DF014DBFB48EBD5A
TempOut:B659ECBCDFB5ADD707985D0DE9AFE603
TempIn:F09BE4DDA75C24F2E213F7A97ABAB205
TempOut:85AA74431362C8733B1F87AA191BE82C
TempIn:2E6FDD9A2DD50AFE334B96577AA5C317
TempOut:D716A68F65C9A14114AF0DBC1AD6B80F
TempIn:B7AD2375B39821B1524EBF11C2B9C4D1
TempOut:23319B31BB72E068771C4097F0E5D2F3
TempIn:B84EB49A4539DEE6B24AB60496B8AB63
TempOut:58105B3817120F735F461AC2D9059FF2
TempIn:8C3C3FDC09B02B16E483EDEB274999CF
TempOut:579481B2B08A69F4A123D7BAA0ECCBF2
key:64666773646667736466676964727574

可以看出.Key都是一样的.InBuf也是一样.但是调用DecryptAES后出来的结果就不一样了.
procedure DecryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey128;
var OutBuf: TAESBuffer);
前面两个参数都是一样.调用后OutBuf就是不一样.
 
厉害,写好了,给我用啊。。
 
其实就是简单利用Buf加密解密.因为需要经常调用,如果每次都得创建个Stream对象,系统开销实在太大了.其实很多代码都是这样,例如Zlib,有人翻译到Delphi,但是可能为了方便,都是先通过流.这样一来,会比直接压缩慢4~20倍.
 
自己用手解决了.TMD
 
多人接受答案了。
 
后退
顶部