Y
yhli
Unregistered / Unconfirmed
GUEST, unregistred user!
delaunay.pas是从网上下载的(June 2002 Update by Dr Steve Evans),用后发现,生成的三角形中个别的内角太大或太小,如何将这些三角形从delaunay链表中移去???
下贴出源程序:
//Credit to Paul Bourke (pbourke@swin.edu.au) for the original Fortran 77 Program )
//Conversion to Visual Basic by EluZioN (EluZioN@casesladder.com)
//Conversion from VB to Delphi6 by Dr Steve Evans (steve@lociuk.com)
///////////////////////////////////////////////////////////////////////////////
//June 2002 Update by Dr Steve Evans (steve@lociuk.com): Heap memory allocation
//added to prevent stack overflow when MaxVertices and MaxTriangles are very large.
//Additional Updates in June 2002:
//Bug in InCircle function fixed. Radius r := Sqrt(rsqr).
//Check for duplicate points added when inserting new point.
//For speed, all points pre-sorted in x direction using quicksort algorithm and
//triangles flagged when no longer needed. The circumcircle centre and radius of
//the triangles are now stored to improve calculation time.
///////////////////////////////////////////////////////////////////////////////
//You can use this code however you like providing the above credits remain in tact
//注意:点和三角形都数组都是从1开始计数的
unit Delaunay;
interface
uses Dialogs, Graphics, Forms, Types,classes,math;
//Set these as applicable
Const
MaxVertices = 500000;
MaxTriangles = 1000000;
ExPtTolerance = 0.000001; //小于这个被认为是同一点
Type
TCastArray = Array [0..2,0..2,0..2] of Integer;
TVectorL3D = Array [0..2] of Double;
TVectorL3I = Array [0..2] of Integer;
PPointPair = ^TPointPair;
TPointPair = record
x1,y1,
x2,y2: Double
end;
//单条等值线
TLever = record
FZ: Double;
Points: TList;
end;
//Points (Vertices)
dVertex = record
X ,
Y ,
Z: Double;
end;
//Created Triangles, vv# are the vertex pointers(点的索引)
dTriangle = record
vv0: LongInt;
vv1: LongInt;
vv2: LongInt;
PreCalc: Integer;
xc,yc,r: Double; //三角形外接圆圆心坐标和半径
end;
TDVertexs = array[0..MaxVertices] of dVertex;
PVertexs = ^TDVertexs;
TDTriangles = array[0..MaxTriangles] of dTriangle;
PTriangles = ^TDTriangles;
TDCompletes = array [0..MaxTriangles] of Boolean;
PCompletes = ^TDCompletes;
TDEdges = array[0..2,0..MaxTriangles * 3] of LongInt;
PEdges = ^TDEdges;
TDelaunay = class
private
{ Private declarations }
FzLow,
FzHigh: Double;
FVertexs: PVertexs;
FTriangles: PTriangles;
FTriangleCount: Integer;
FPointCount: Integer; //Variable for total number of points (vertices)
procedure QuickSort(var aVertexs: PVertexs; Low,High: Integer);
function GetPointCount: integer;
function InCircle(xp, yp, x1, y1, x2, y2, x3, y3: Double;
var xc: Double; var yc: Double; var r: Double; j: Integer): Boolean;
Function WhichSide(xp, yp, x1, y1, x2, y2: Double): Integer;
Function Triangulate(nVert: Integer): Integer;
public
{ Public declarations }
FLevers: Array of TLever;
TempBuffer: TBitmap;
TargetForm: TForm;
constructor Create;
destructor Destroy; override;
procedure Mesh;
procedure Draw;
procedure ScatterContour(ZCount: Integer; Z: Array of Single);
procedure AddPoint(x,y,z: Single);
procedure ClearBackPage;
procedure FlipBackPage;
property zLow: Double read FzLow write FzLow;
property zHigh: Double read FzHigh write FzHigh;
property Vertexs: PVertexs read FVertexs;
property Triangles: PTriangles read FTriangles;
property TriangleCount: Integer read FTriangleCount;
property PointCount: Integer read GetPointCount;
end;
implementation
constructor TDelaunay.Create;
begin
//Initiate total points to 1, using base 0 causes problems in the functions
FPointCount := 1;
FTriangleCount:=0;
FzLow:= 0;
FzHigh:= 0;
TempBuffer:=TBitmap.Create;
//Allocate memory for arrays
GetMem(FVertexs, sizeof(FVertexs^));
GetMem(FTriangles, sizeof(FTriangles^));
end;
destructor TDelaunay.Destroy;
begin
//Free memory for arrays
FreeMem(FVertexs, sizeof(FVertexs^));
FreeMem(FTriangles, sizeof(FTriangles^));
end;
//加入点到FVertexs数组里
procedure TDelaunay.AddPoint(x,y,z: Single);
var
i: Integer;
SamePoint: Boolean;
begin
//Check for duplicate points 检查是否有完全相同的点,
//如果有则,该点不被加入
SamePoint := false;
i := 1;
while i < FPointCount do
begin
If (Abs(x-FVertexs^.X) < ExPtTolerance) and
(Abs(y-FVertexs^.Y) < ExPtTolerance) Then
SamePoint:= true;
Inc(i);
end;
if FzLow > z then
FzLow:= z
else if FzHigh < z then
FzHigh:= z;
if not SamePoint then
begin
//Set Vertex coordinates
FVertexs^[FPointCount].X := x;
FVertexs^[FPointCount].Y := y;
FVertexs^[FPointCount].Z := z;
//Increment the total number of points
//最后得到的点的数目会比实际数目多一个
FPointCount := FPointCount + 1;
end;
end;
//构建三角网
procedure TDelaunay.Mesh;
begin
QuickSort(FVertexs,1,FPointCount-1);
If FPointCount > 3 Then
FTriangleCount := Triangulate(FPointCount-1); //'Returns number of triangles created.
end;
//点按X坐标从小到大排序
procedure TDelaunay.QuickSort(var aVertexs: PVertexs; Low,High: Integer);
//Sort all points by x
procedure DoQuickSort(var aVertexs: PVertexs; iLo, iHi: Integer);
var
Lo, Hi: Integer;
Mid: Double;
T: dVertex;
begin
Lo := iLo;
Hi := iHi;
Mid := aVertexs^[(Lo + Hi) div 2].X;
repeat
while aVertexs^[Lo].x < Mid do Inc(Lo);
while aVertexs^[Hi].x > Mid do Dec(Hi);
if Lo <= Hi then
begin
T := aVertexs^[Lo];
aVertexs^[Lo] := aVertexs^[Hi];
aVertexs^[Hi] := T;
Inc(Lo);
Dec(Hi);
end;
until Lo > Hi;
if Hi > iLo then DoQuickSort(aVertexs, iLo, Hi);
if Lo < iHi then DoQuickSort(aVertexs, Lo, iHi);
end;
begin
DoQuickSort(aVertexs, Low, High);
end;
//真正构建三角网(nVert:点的个数)
Function TDelaunay.Triangulate(nVert: Integer): Integer;
//Takes as input NVERT vertices in arrays Vertex()
//Returned is a list of NTRI triangular faces in the array
//Triangle(). These triangles are arranged in clockwise order.
var
Completes: PCompletes;
Edges: PEdges;
Nedge: LongInt;
//For Super Triangle 一个包括所有点的外包三角形
xmin: Double;
xmax: Double;
ymin: Double;
ymax: Double;
xmid: Double;
ymid: Double;
dx: Double;
dy: Double;
dmax: Double;
//General Variables
i : Integer;
j : Integer;
k : Integer;
ntri : Integer;
xc : Double;
yc : Double;
r : Double;
inc : Boolean; //是否在外接圆中
begin
//Allocate memory
GetMem(Completes, sizeof(Completes^));
GetMem(Edges, sizeof(Edges^));
//Find the maximum and minimum vertex bounds.
//This is to allow calculation of the bounding triangle
xmin := FVertexs^[1].x;
ymin := FVertexs^[1].y;
xmax := xmin;
ymax := ymin;
For i := 2 To nvert do
begin
If FVertexs^.x < xmin Then xmin := FVertexs^.x;
If FVertexs^.x > xmax Then xmax := FVertexs^.x;
If FVertexs^.y < ymin Then ymin := FVertexs^.y;
If FVertexs^.y > ymax Then ymax := FVertexs^.y;
end;
dx := xmax - xmin;
dy := ymax - ymin;
If dx > dy Then
dmax := dx
Else
dmax := dy;
xmid := Trunc((xmax + xmin) / 2);
ymid := Trunc((ymax + ymin) / 2);
//Set up the supertriangle
//This is a triangle which encompasses all the sample points.
//The supertriangle coordinates are added to the end of the
//vertex list. 注意:The supertriangle is the first triangle in
//the triangle list.
FVertexs^[nvert + 1].x := (xmid - 2 * dmax);
FVertexs^[nvert + 1].y := (ymid - dmax);
FVertexs^[nvert + 2].x := xmid;
FVertexs^[nvert + 2].y := (ymid + 2 * dmax);
FVertexs^[nvert + 3].x := (xmid + 2 * dmax);
FVertexs^[nvert + 3].y := (ymid - dmax);
FTriangles^[1].vv0 := nvert + 1;
FTriangles^[1].vv1 := nvert + 2;
FTriangles^[1].vv2 := nvert + 3;
FTriangles^[1].Precalc := 0;
Completes[1] := False;
ntri := 1;
//Include each point one at a time into the existing mesh
For i := 1 To nvert do
begin
Nedge := 0;
//Set up the edge buffer.
//If the point (Vertex(i).x,Vertex(i).y) lies inside the circumcircle then the
//three edges of that triangle are added to the edge buffer.
j := 0;
repeat
j := j + 1;
If Completes^[j] <> True Then
begin
inc := InCircle(FVertexs^.x, FVertexs^.y, FVertexs^[FTriangles^[j].vv0].x,
FVertexs^[FTriangles^[j].vv0].y, FVertexs^[FTriangles^[j].vv1].x,
FVertexs^[FTriangles^[j].vv1].y, FVertexs^[FTriangles^[j].vv2].x,
FVertexs^[FTriangles^[j].vv2].y, xc, yc, r,j);
//Include this if points are sorted by X
If (xc + r) < FVertexs.x Then //
completes[j] := True //
Else If inc Then
begin
Edges^[1, Nedge + 1] := FTriangles^[j].vv0;
Edges^[2, Nedge + 1] := FTriangles^[j].vv1;
Edges^[1, Nedge + 2] := FTriangles^[j].vv1;
Edges^[2, Nedge + 2] := FTriangles^[j].vv2;
Edges^[1, Nedge + 3] := FTriangles^[j].vv2;
Edges^[2, Nedge + 3] := FTriangles^[j].vv0;
Nedge := Nedge + 3;
FTriangles^[j].vv0 := FTriangles^[ntri].vv0;
FTriangles^[j].vv1 := FTriangles^[ntri].vv1;
FTriangles^[j].vv2 := FTriangles^[ntri].vv2;
FTriangles^[j].PreCalc:=FTriangles^[ntri].PreCalc;
FTriangles^[j].xc:=FTriangles^[ntri].xc;
FTriangles^[j].yc:=FTriangles^[ntri].yc;
FTriangles^[j].r:=FTriangles^[ntri].r;
FTriangles^[ntri].PreCalc:=0;
Completes^[j] := Completes^[ntri];
j := j - 1;
ntri := ntri - 1;
End;//else
End; //if
until j>=ntri; //repeat
// Tag multiple edges
// Note: if all triangles are specified anticlockwise then all
// interior edges are opposite pointing in direction.
For j := 1 To Nedge - 1 do
If Not (Edges^[1, j] = 0) And Not (Edges^[2, j] = 0) Then
For k := j + 1 To Nedge do
If Not (Edges^[1, k] = 0) And Not (Edges^[2, k] = 0) Then
If Edges^[1, j] = Edges^[2, k] Then
If Edges^[2, j] = Edges^[1, k] Then
begin
Edges^[1, j] := 0;
Edges^[2, j] := 0;
Edges^[1, k] := 0;
Edges^[2, k] := 0;
End;
// Form new triangles for the current point
// Skipping over any tagged edges.
// All edges are arranged in clockwise order.
For j := 1 To Nedge do
If Not (Edges^[1, j] = 0) And Not (Edges^[2, j] = 0) Then
begin
ntri := ntri + 1;
FTriangles^[ntri].vv0 := Edges^[1, j];
FTriangles^[ntri].vv1 := Edges^[2, j];
FTriangles^[ntri].vv2 := i;
FTriangles^[ntri].PreCalc:=0;
Completes^[ntri] := False;
End;
end; //the first for
//Remove triangles with supertriangle vertices
//These are triangles which have a vertex number greater than NVERT
i:= 0;
repeat
i := i + 1;
If (FTriangles^.vv0 > nvert) Or (FTriangles^.vv1 > nvert) Or (FTriangles^.vv2 > nvert) Then
begin
FTriangles^.vv0 := FTriangles^[ntri].vv0;
FTriangles^.vv1 := FTriangles^[ntri].vv1;
FTriangles^.vv2 := FTriangles^[ntri].vv2;
i := i - 1;
ntri := ntri - 1;
End;
until i>=ntri;
Triangulate := ntri;
//Free memory
FreeMem(Completes, sizeof(Completes^));
FreeMem(Edges, sizeof(Edges^));
End;
function TDelaunay.InCircle(xp, yp, x1, y1, x2, y2, x3, y3: Double;
var xc: Double; var yc: Double; var r: Double; j: Integer): Boolean;
//Return TRUE if the point (xp,yp) lies inside the circumcircle
//made up by points (x1,y1) (x2,y2) (x3,y3)
//The circumcircle centre is returned in (xc,yc) and the radius r
//NOTE: A point on the edge is inside the circumcircle
var
eps: Double;
m1: Double;
m2: Double;
mx1: Double;
mx2: Double;
my1: Double;
my2: Double;
dx: Double;
dy: Double;
rsqr: Double;
drsqr: Double;
begin
eps:= 0.000001;
InCircle := False;
//Check if xc,yc and r have already been calculated
if FTriangles^[j].PreCalc=1 then
begin
xc := FTriangles^[j].xc;
yc := FTriangles^[j].yc;
r := FTriangles^[j].r;
rsqr := r*r;
dx := xp - xc;
dy := yp - yc;
drsqr := dx * dx + dy * dy;
end
else
begin
If (Abs(y1 - y2) < eps) And (Abs(y2 - y3) < eps) Then
begin
ShowMessage('INCIRCUM - F - Points are coincident !!');
Exit;
end;
If Abs(y2 - y1) < eps Then
begin
m2 := -(x3 - x2) / (y3 - y2);
mx2 := (x2 + x3) / 2;
my2 := (y2 + y3) / 2;
xc := (x2 + x1) / 2;
yc := m2 * (xc - mx2) + my2;
end
Else If Abs(y3 - y2) < eps Then
begin
m1 := -(x2 - x1) / (y2 - y1);
mx1 := (x1 + x2) / 2;
my1 := (y1 + y2) / 2;
xc := (x3 + x2) / 2;
yc := m1 * (xc - mx1) + my1;
end
Else
begin
m1 := -(x2 - x1) / (y2 - y1);
m2 := -(x3 - x2) / (y3 - y2);
mx1 := (x1 + x2) / 2;
mx2 := (x2 + x3) / 2;
my1 := (y1 + y2) / 2;
my2 := (y2 + y3) / 2;
if (m1-m2)<>0 then //se
begin
xc := (m1 * mx1 - m2 * mx2 + my2 - my1) / (m1 - m2);
yc := m1 * (xc - mx1) + my1;
end
else
begin
xc:= (x1+x2+x3)/3;
yc:= (y1+y2+y3)/3;
end;
end;//else
dx := x2 - xc;
dy := y2 - yc;
rsqr := dx * dx + dy * dy;
r := Sqrt(rsqr);
dx := xp - xc;
dy := yp - yc;
drsqr := dx * dx + dy * dy;
//store the xc,yc and r for later use
FTriangles^[j].PreCalc:=1;
FTriangles^[j].xc:=xc;
FTriangles^[j].yc:=yc;
FTriangles^[j].r:=r;
end; //the big else
If drsqr <= rsqr Then InCircle := True;
end;
Function TDelaunay.WhichSide(xp, yp, x1, y1, x2, y2: Double): Integer;
//Determines which side of a line the point (xp,yp) lies.
//The line goes from (x1,y1) to (x2,y2)
//Returns -1 for a point to the left
// 0 for a point on the line
// +1 for a point to the right
var
equation: Double;
begin
equation := ((yp - y1) * (x2 - x1)) - ((y2 - y1) * (xp - x1));
If equation > 0 Then
WhichSide := -1
Else If equation = 0 Then
WhichSide := 0
Else
WhichSide := 1;
End;
procedure TDelaunay.Draw;
var
i: Integer;
begin
// Clear the form canvas
ClearBackPage;
TempBuffer.Canvas.Brush.Color := clwhite;
//Draw the created triangles
if (FTriangleCount > 0) then
For i:= 1 To FTriangleCount do
begin
TempBuffer.Canvas.Polygon([Point(Trunc(FVertexs^[FTriangles^.vv0].x), Trunc(FVertexs^[FTriangles^.vv0].y)),
Point(Trunc(FVertexs^[FTriangles^.vv1].x), Trunc(FVertexs^[FTriangles^.vv1].y)),
Point(Trunc(FVertexs^[FTriangles^.vv2].x), Trunc(FVertexs^[FTriangles^.vv2].y))]);
end;
FlipBackPage;
end;
procedure TDelaunay.ClearBackPage;
begin
TempBuffer.Height:=TargetForm.Height;
TempBuffer.Width:=TargetForm.Width;
TempBuffer.Canvas.Brush.Color := clBlack;
TempBuffer.Canvas.FillRect(Rect(0,0,TargetForm.Width,TargetForm.Height));
end;
procedure TDelaunay.FlipBackPage;
var
ARect : TRect;
begin
ARect := Rect(0,0,TargetForm.Width,TargetForm.Height);
TargetForm.Canvas.CopyRect(ARect, TempBuffer.Canvas, ARect);
end;
function TDelaunay.GetPointCount: integer;
begin
Result:= FPointCount-1;
end;
procedure TDelaunay.ScatterContour(ZCount: Integer; Z: Array of Single);
var
i,j,m: Integer;
Deside: Integer;
CastTab : TCastArray;
sH : TVectorL3I;
H,xH,yH : TVectorL3D;
TempD1,TempD2,dMin,dMax: Double ;
x1,x2,y1,y2: Double; //等值点坐标
ARecord: PPointPair; //记录点对
//插值计算
Function xSec(p1,p2:Integer): Double;
Begin
result:= (H[p2]*xH[p1]-H[p1]*xH[p2])/(H[p2]-H[p1]);
End;
Function ySec(p1,p2:Integer): Double;
Begin
result:= (H[p2]*yH[p1]-H[p1]*yH[p2])/(H[p2]-H[p1]);
End;
begin
//分配记录等值线的数组
for i:= 0 to Length(FLevers)-1 do
if Assigned(FLevers.Points) then
FLevers.Points.Free;
SetLength(FLevers,ZCount);
for i:= 0 to ZCount-1 do
begin
FLevers.FZ:= Z;
FLevers.Points:= TList.Create;
end;
//每个三角行内出现等值点的情况映射,有27种情况
//这27种情况是根据三角形的三个顶点高程与等值点
//的大小比较得来得,每个点有三种情况:大、小、等
//0..19 为 对各种情况的处理方法,有20种
CastTab[0,0,0]:= 0; CastTab[0,0,1]:= 0; CastTab[0,0,2]:= 1;
CastTab[0,1,0]:= 0; CastTab[0,1,1]:= 2; CastTab[0,1,2]:= 3;
CastTab[0,2,0]:= 4; CastTab[0,2,1]:= 5; CastTab[0,2,2]:= 6;
CastTab[1,0,0]:= 0; CastTab[1,0,1]:= 7; CastTab[1,0,2]:= 8;
CastTab[1,1,0]:= 9; CastTab[1,1,1]:= 10; CastTab[1,1,2]:= 9;
CastTab[1,2,0]:= 8; CastTab[1,2,1]:= 7; CastTab[1,2,2]:= 0;
CastTab[2,0,0]:= 6; CastTab[2,0,1]:= 5; CastTab[2,0,2]:= 4;
CastTab[2,1,0]:= 3; CastTab[2,1,1]:= 2; CastTab[2,1,2]:= 0;
CastTab[2,2,0]:= 1; CastTab[2,2,1]:= 0; CastTab[2,2,2]:= 0;
for i:= 1 to TriangleCount do
begin
//获得三角形三个顶点中的最小值和最大值
TempD1:= min(FVertexs^[FTriangles^.vv0].Z,FVertexs^[FTriangles^.vv1].Z);
TempD2:= min(FVertexs^[FTriangles^.vv1].Z,FVertexs^[FTriangles^.vv2].Z);
dMin:= min(TempD1,TempD2);
TempD1:= max(FVertexs^[FTriangles^.vv0].Z,FVertexs^[FTriangles^.vv1].Z);
TempD2:= max(FVertexs^[FTriangles^.vv1].Z,FVertexs^[FTriangles^.vv2].Z);
dMax:= max(TempD1,TempD2);
for j:= 0 to ZCount-1 do
if (Z[j] >= dMin) And (Z[j] <= dMax) Then
begin
H[0] := FVertexs^[FTriangles^.vv0].Z-Z[j];
xH[0]:= FVertexs^[FTriangles^.vv0].X;
yH[0]:= FVertexs^[FTriangles^.vv0].Y;
H[1] := FVertexs^[FTriangles^.vv1].Z-Z[j];
xH[1]:= FVertexs^[FTriangles^.vv1].X;
yH[1]:= FVertexs^[FTriangles^.vv1].Y;
H[2] := FVertexs^[FTriangles^.vv2].Z-Z[j];
xH[2]:= FVertexs^[FTriangles^.vv2].X;
yH[2]:= FVertexs^[FTriangles^.vv2].Y;
for m:= 0 to 2 do
If H[m] > 0 Then
sH[m]:= 1
Else If H[m]<0 Then
sH[m]:= -1
Else
sH[m]:= 0;
Deside := CastTab[sH[0]+1 ,sH[1]+1, sH[2]+1];
If NOT(deside = 0) Then // 0的情况不处理
begin
Case deside Of
1: begin
x1:= xSec(0,2);
y1:= ySec(0,2);
x2:= xSec(1,2);
y2:= ySec(1,2);
end;
2: begin
x1:= xH[1];
y1:= yH[1];
x2:= xH[2];
y2:= yH[2];
end;
3: begin
x1:= xH[1];
y1:= yH[1];
x2:= xSec(0,2);
y2:= ySec(0,2);
end;
4: begin
x1:= xSec(0,1);
y1:= ySec(0,1);
x2:= xSec(1,2);
y2:= ySec(1,2);
end;
5: Begin
x1:= xH[2];
y1:= yH[2];
x2:= xSec(0,1);
y2:= ySec(0,1);
End;
6: Begin
x1:= xSec(0,1);
y1:= ySec(0,1);
x2:= xSec(0,2);
y2:= ySec(0,2);
End;
7: Begin
x1:= xH[0];
y1:= yH[0];
x2:= xH[2];
y2:= yH[2];
End;
8: Begin
x1:= xH[0];
y1:= yH[0];
x2:= xSec(1,2);
y2:= ySec(1,2);
End;
9: Begin
x1:= xH[0];
y1:= yH[0];
x2:= xH[1];
y2:= yH[1];
End;
10: begin //there is some argument here
x1:= xH[0];
y1:= yH[0];
x2:= xH[2];
y2:= yH[2];
end;
end;//----case
//此处获得该三角形内的等值点
New(ARecord);
ARecord^.x1:= x1;
ARecord^.y1:= y1;
ARecord^.x2:= x2;
ARecord^.y2:= y2;
FLevers[j].Points.Add(ARecord);
end; //if not(deside)
end;// if Z[]
end;
end;
end.
下贴出源程序:
//Credit to Paul Bourke (pbourke@swin.edu.au) for the original Fortran 77 Program )
//Conversion to Visual Basic by EluZioN (EluZioN@casesladder.com)
//Conversion from VB to Delphi6 by Dr Steve Evans (steve@lociuk.com)
///////////////////////////////////////////////////////////////////////////////
//June 2002 Update by Dr Steve Evans (steve@lociuk.com): Heap memory allocation
//added to prevent stack overflow when MaxVertices and MaxTriangles are very large.
//Additional Updates in June 2002:
//Bug in InCircle function fixed. Radius r := Sqrt(rsqr).
//Check for duplicate points added when inserting new point.
//For speed, all points pre-sorted in x direction using quicksort algorithm and
//triangles flagged when no longer needed. The circumcircle centre and radius of
//the triangles are now stored to improve calculation time.
///////////////////////////////////////////////////////////////////////////////
//You can use this code however you like providing the above credits remain in tact
//注意:点和三角形都数组都是从1开始计数的
unit Delaunay;
interface
uses Dialogs, Graphics, Forms, Types,classes,math;
//Set these as applicable
Const
MaxVertices = 500000;
MaxTriangles = 1000000;
ExPtTolerance = 0.000001; //小于这个被认为是同一点
Type
TCastArray = Array [0..2,0..2,0..2] of Integer;
TVectorL3D = Array [0..2] of Double;
TVectorL3I = Array [0..2] of Integer;
PPointPair = ^TPointPair;
TPointPair = record
x1,y1,
x2,y2: Double
end;
//单条等值线
TLever = record
FZ: Double;
Points: TList;
end;
//Points (Vertices)
dVertex = record
X ,
Y ,
Z: Double;
end;
//Created Triangles, vv# are the vertex pointers(点的索引)
dTriangle = record
vv0: LongInt;
vv1: LongInt;
vv2: LongInt;
PreCalc: Integer;
xc,yc,r: Double; //三角形外接圆圆心坐标和半径
end;
TDVertexs = array[0..MaxVertices] of dVertex;
PVertexs = ^TDVertexs;
TDTriangles = array[0..MaxTriangles] of dTriangle;
PTriangles = ^TDTriangles;
TDCompletes = array [0..MaxTriangles] of Boolean;
PCompletes = ^TDCompletes;
TDEdges = array[0..2,0..MaxTriangles * 3] of LongInt;
PEdges = ^TDEdges;
TDelaunay = class
private
{ Private declarations }
FzLow,
FzHigh: Double;
FVertexs: PVertexs;
FTriangles: PTriangles;
FTriangleCount: Integer;
FPointCount: Integer; //Variable for total number of points (vertices)
procedure QuickSort(var aVertexs: PVertexs; Low,High: Integer);
function GetPointCount: integer;
function InCircle(xp, yp, x1, y1, x2, y2, x3, y3: Double;
var xc: Double; var yc: Double; var r: Double; j: Integer): Boolean;
Function WhichSide(xp, yp, x1, y1, x2, y2: Double): Integer;
Function Triangulate(nVert: Integer): Integer;
public
{ Public declarations }
FLevers: Array of TLever;
TempBuffer: TBitmap;
TargetForm: TForm;
constructor Create;
destructor Destroy; override;
procedure Mesh;
procedure Draw;
procedure ScatterContour(ZCount: Integer; Z: Array of Single);
procedure AddPoint(x,y,z: Single);
procedure ClearBackPage;
procedure FlipBackPage;
property zLow: Double read FzLow write FzLow;
property zHigh: Double read FzHigh write FzHigh;
property Vertexs: PVertexs read FVertexs;
property Triangles: PTriangles read FTriangles;
property TriangleCount: Integer read FTriangleCount;
property PointCount: Integer read GetPointCount;
end;
implementation
constructor TDelaunay.Create;
begin
//Initiate total points to 1, using base 0 causes problems in the functions
FPointCount := 1;
FTriangleCount:=0;
FzLow:= 0;
FzHigh:= 0;
TempBuffer:=TBitmap.Create;
//Allocate memory for arrays
GetMem(FVertexs, sizeof(FVertexs^));
GetMem(FTriangles, sizeof(FTriangles^));
end;
destructor TDelaunay.Destroy;
begin
//Free memory for arrays
FreeMem(FVertexs, sizeof(FVertexs^));
FreeMem(FTriangles, sizeof(FTriangles^));
end;
//加入点到FVertexs数组里
procedure TDelaunay.AddPoint(x,y,z: Single);
var
i: Integer;
SamePoint: Boolean;
begin
//Check for duplicate points 检查是否有完全相同的点,
//如果有则,该点不被加入
SamePoint := false;
i := 1;
while i < FPointCount do
begin
If (Abs(x-FVertexs^.X) < ExPtTolerance) and
(Abs(y-FVertexs^.Y) < ExPtTolerance) Then
SamePoint:= true;
Inc(i);
end;
if FzLow > z then
FzLow:= z
else if FzHigh < z then
FzHigh:= z;
if not SamePoint then
begin
//Set Vertex coordinates
FVertexs^[FPointCount].X := x;
FVertexs^[FPointCount].Y := y;
FVertexs^[FPointCount].Z := z;
//Increment the total number of points
//最后得到的点的数目会比实际数目多一个
FPointCount := FPointCount + 1;
end;
end;
//构建三角网
procedure TDelaunay.Mesh;
begin
QuickSort(FVertexs,1,FPointCount-1);
If FPointCount > 3 Then
FTriangleCount := Triangulate(FPointCount-1); //'Returns number of triangles created.
end;
//点按X坐标从小到大排序
procedure TDelaunay.QuickSort(var aVertexs: PVertexs; Low,High: Integer);
//Sort all points by x
procedure DoQuickSort(var aVertexs: PVertexs; iLo, iHi: Integer);
var
Lo, Hi: Integer;
Mid: Double;
T: dVertex;
begin
Lo := iLo;
Hi := iHi;
Mid := aVertexs^[(Lo + Hi) div 2].X;
repeat
while aVertexs^[Lo].x < Mid do Inc(Lo);
while aVertexs^[Hi].x > Mid do Dec(Hi);
if Lo <= Hi then
begin
T := aVertexs^[Lo];
aVertexs^[Lo] := aVertexs^[Hi];
aVertexs^[Hi] := T;
Inc(Lo);
Dec(Hi);
end;
until Lo > Hi;
if Hi > iLo then DoQuickSort(aVertexs, iLo, Hi);
if Lo < iHi then DoQuickSort(aVertexs, Lo, iHi);
end;
begin
DoQuickSort(aVertexs, Low, High);
end;
//真正构建三角网(nVert:点的个数)
Function TDelaunay.Triangulate(nVert: Integer): Integer;
//Takes as input NVERT vertices in arrays Vertex()
//Returned is a list of NTRI triangular faces in the array
//Triangle(). These triangles are arranged in clockwise order.
var
Completes: PCompletes;
Edges: PEdges;
Nedge: LongInt;
//For Super Triangle 一个包括所有点的外包三角形
xmin: Double;
xmax: Double;
ymin: Double;
ymax: Double;
xmid: Double;
ymid: Double;
dx: Double;
dy: Double;
dmax: Double;
//General Variables
i : Integer;
j : Integer;
k : Integer;
ntri : Integer;
xc : Double;
yc : Double;
r : Double;
inc : Boolean; //是否在外接圆中
begin
//Allocate memory
GetMem(Completes, sizeof(Completes^));
GetMem(Edges, sizeof(Edges^));
//Find the maximum and minimum vertex bounds.
//This is to allow calculation of the bounding triangle
xmin := FVertexs^[1].x;
ymin := FVertexs^[1].y;
xmax := xmin;
ymax := ymin;
For i := 2 To nvert do
begin
If FVertexs^.x < xmin Then xmin := FVertexs^.x;
If FVertexs^.x > xmax Then xmax := FVertexs^.x;
If FVertexs^.y < ymin Then ymin := FVertexs^.y;
If FVertexs^.y > ymax Then ymax := FVertexs^.y;
end;
dx := xmax - xmin;
dy := ymax - ymin;
If dx > dy Then
dmax := dx
Else
dmax := dy;
xmid := Trunc((xmax + xmin) / 2);
ymid := Trunc((ymax + ymin) / 2);
//Set up the supertriangle
//This is a triangle which encompasses all the sample points.
//The supertriangle coordinates are added to the end of the
//vertex list. 注意:The supertriangle is the first triangle in
//the triangle list.
FVertexs^[nvert + 1].x := (xmid - 2 * dmax);
FVertexs^[nvert + 1].y := (ymid - dmax);
FVertexs^[nvert + 2].x := xmid;
FVertexs^[nvert + 2].y := (ymid + 2 * dmax);
FVertexs^[nvert + 3].x := (xmid + 2 * dmax);
FVertexs^[nvert + 3].y := (ymid - dmax);
FTriangles^[1].vv0 := nvert + 1;
FTriangles^[1].vv1 := nvert + 2;
FTriangles^[1].vv2 := nvert + 3;
FTriangles^[1].Precalc := 0;
Completes[1] := False;
ntri := 1;
//Include each point one at a time into the existing mesh
For i := 1 To nvert do
begin
Nedge := 0;
//Set up the edge buffer.
//If the point (Vertex(i).x,Vertex(i).y) lies inside the circumcircle then the
//three edges of that triangle are added to the edge buffer.
j := 0;
repeat
j := j + 1;
If Completes^[j] <> True Then
begin
inc := InCircle(FVertexs^.x, FVertexs^.y, FVertexs^[FTriangles^[j].vv0].x,
FVertexs^[FTriangles^[j].vv0].y, FVertexs^[FTriangles^[j].vv1].x,
FVertexs^[FTriangles^[j].vv1].y, FVertexs^[FTriangles^[j].vv2].x,
FVertexs^[FTriangles^[j].vv2].y, xc, yc, r,j);
//Include this if points are sorted by X
If (xc + r) < FVertexs.x Then //
completes[j] := True //
Else If inc Then
begin
Edges^[1, Nedge + 1] := FTriangles^[j].vv0;
Edges^[2, Nedge + 1] := FTriangles^[j].vv1;
Edges^[1, Nedge + 2] := FTriangles^[j].vv1;
Edges^[2, Nedge + 2] := FTriangles^[j].vv2;
Edges^[1, Nedge + 3] := FTriangles^[j].vv2;
Edges^[2, Nedge + 3] := FTriangles^[j].vv0;
Nedge := Nedge + 3;
FTriangles^[j].vv0 := FTriangles^[ntri].vv0;
FTriangles^[j].vv1 := FTriangles^[ntri].vv1;
FTriangles^[j].vv2 := FTriangles^[ntri].vv2;
FTriangles^[j].PreCalc:=FTriangles^[ntri].PreCalc;
FTriangles^[j].xc:=FTriangles^[ntri].xc;
FTriangles^[j].yc:=FTriangles^[ntri].yc;
FTriangles^[j].r:=FTriangles^[ntri].r;
FTriangles^[ntri].PreCalc:=0;
Completes^[j] := Completes^[ntri];
j := j - 1;
ntri := ntri - 1;
End;//else
End; //if
until j>=ntri; //repeat
// Tag multiple edges
// Note: if all triangles are specified anticlockwise then all
// interior edges are opposite pointing in direction.
For j := 1 To Nedge - 1 do
If Not (Edges^[1, j] = 0) And Not (Edges^[2, j] = 0) Then
For k := j + 1 To Nedge do
If Not (Edges^[1, k] = 0) And Not (Edges^[2, k] = 0) Then
If Edges^[1, j] = Edges^[2, k] Then
If Edges^[2, j] = Edges^[1, k] Then
begin
Edges^[1, j] := 0;
Edges^[2, j] := 0;
Edges^[1, k] := 0;
Edges^[2, k] := 0;
End;
// Form new triangles for the current point
// Skipping over any tagged edges.
// All edges are arranged in clockwise order.
For j := 1 To Nedge do
If Not (Edges^[1, j] = 0) And Not (Edges^[2, j] = 0) Then
begin
ntri := ntri + 1;
FTriangles^[ntri].vv0 := Edges^[1, j];
FTriangles^[ntri].vv1 := Edges^[2, j];
FTriangles^[ntri].vv2 := i;
FTriangles^[ntri].PreCalc:=0;
Completes^[ntri] := False;
End;
end; //the first for
//Remove triangles with supertriangle vertices
//These are triangles which have a vertex number greater than NVERT
i:= 0;
repeat
i := i + 1;
If (FTriangles^.vv0 > nvert) Or (FTriangles^.vv1 > nvert) Or (FTriangles^.vv2 > nvert) Then
begin
FTriangles^.vv0 := FTriangles^[ntri].vv0;
FTriangles^.vv1 := FTriangles^[ntri].vv1;
FTriangles^.vv2 := FTriangles^[ntri].vv2;
i := i - 1;
ntri := ntri - 1;
End;
until i>=ntri;
Triangulate := ntri;
//Free memory
FreeMem(Completes, sizeof(Completes^));
FreeMem(Edges, sizeof(Edges^));
End;
function TDelaunay.InCircle(xp, yp, x1, y1, x2, y2, x3, y3: Double;
var xc: Double; var yc: Double; var r: Double; j: Integer): Boolean;
//Return TRUE if the point (xp,yp) lies inside the circumcircle
//made up by points (x1,y1) (x2,y2) (x3,y3)
//The circumcircle centre is returned in (xc,yc) and the radius r
//NOTE: A point on the edge is inside the circumcircle
var
eps: Double;
m1: Double;
m2: Double;
mx1: Double;
mx2: Double;
my1: Double;
my2: Double;
dx: Double;
dy: Double;
rsqr: Double;
drsqr: Double;
begin
eps:= 0.000001;
InCircle := False;
//Check if xc,yc and r have already been calculated
if FTriangles^[j].PreCalc=1 then
begin
xc := FTriangles^[j].xc;
yc := FTriangles^[j].yc;
r := FTriangles^[j].r;
rsqr := r*r;
dx := xp - xc;
dy := yp - yc;
drsqr := dx * dx + dy * dy;
end
else
begin
If (Abs(y1 - y2) < eps) And (Abs(y2 - y3) < eps) Then
begin
ShowMessage('INCIRCUM - F - Points are coincident !!');
Exit;
end;
If Abs(y2 - y1) < eps Then
begin
m2 := -(x3 - x2) / (y3 - y2);
mx2 := (x2 + x3) / 2;
my2 := (y2 + y3) / 2;
xc := (x2 + x1) / 2;
yc := m2 * (xc - mx2) + my2;
end
Else If Abs(y3 - y2) < eps Then
begin
m1 := -(x2 - x1) / (y2 - y1);
mx1 := (x1 + x2) / 2;
my1 := (y1 + y2) / 2;
xc := (x3 + x2) / 2;
yc := m1 * (xc - mx1) + my1;
end
Else
begin
m1 := -(x2 - x1) / (y2 - y1);
m2 := -(x3 - x2) / (y3 - y2);
mx1 := (x1 + x2) / 2;
mx2 := (x2 + x3) / 2;
my1 := (y1 + y2) / 2;
my2 := (y2 + y3) / 2;
if (m1-m2)<>0 then //se
begin
xc := (m1 * mx1 - m2 * mx2 + my2 - my1) / (m1 - m2);
yc := m1 * (xc - mx1) + my1;
end
else
begin
xc:= (x1+x2+x3)/3;
yc:= (y1+y2+y3)/3;
end;
end;//else
dx := x2 - xc;
dy := y2 - yc;
rsqr := dx * dx + dy * dy;
r := Sqrt(rsqr);
dx := xp - xc;
dy := yp - yc;
drsqr := dx * dx + dy * dy;
//store the xc,yc and r for later use
FTriangles^[j].PreCalc:=1;
FTriangles^[j].xc:=xc;
FTriangles^[j].yc:=yc;
FTriangles^[j].r:=r;
end; //the big else
If drsqr <= rsqr Then InCircle := True;
end;
Function TDelaunay.WhichSide(xp, yp, x1, y1, x2, y2: Double): Integer;
//Determines which side of a line the point (xp,yp) lies.
//The line goes from (x1,y1) to (x2,y2)
//Returns -1 for a point to the left
// 0 for a point on the line
// +1 for a point to the right
var
equation: Double;
begin
equation := ((yp - y1) * (x2 - x1)) - ((y2 - y1) * (xp - x1));
If equation > 0 Then
WhichSide := -1
Else If equation = 0 Then
WhichSide := 0
Else
WhichSide := 1;
End;
procedure TDelaunay.Draw;
var
i: Integer;
begin
// Clear the form canvas
ClearBackPage;
TempBuffer.Canvas.Brush.Color := clwhite;
//Draw the created triangles
if (FTriangleCount > 0) then
For i:= 1 To FTriangleCount do
begin
TempBuffer.Canvas.Polygon([Point(Trunc(FVertexs^[FTriangles^.vv0].x), Trunc(FVertexs^[FTriangles^.vv0].y)),
Point(Trunc(FVertexs^[FTriangles^.vv1].x), Trunc(FVertexs^[FTriangles^.vv1].y)),
Point(Trunc(FVertexs^[FTriangles^.vv2].x), Trunc(FVertexs^[FTriangles^.vv2].y))]);
end;
FlipBackPage;
end;
procedure TDelaunay.ClearBackPage;
begin
TempBuffer.Height:=TargetForm.Height;
TempBuffer.Width:=TargetForm.Width;
TempBuffer.Canvas.Brush.Color := clBlack;
TempBuffer.Canvas.FillRect(Rect(0,0,TargetForm.Width,TargetForm.Height));
end;
procedure TDelaunay.FlipBackPage;
var
ARect : TRect;
begin
ARect := Rect(0,0,TargetForm.Width,TargetForm.Height);
TargetForm.Canvas.CopyRect(ARect, TempBuffer.Canvas, ARect);
end;
function TDelaunay.GetPointCount: integer;
begin
Result:= FPointCount-1;
end;
procedure TDelaunay.ScatterContour(ZCount: Integer; Z: Array of Single);
var
i,j,m: Integer;
Deside: Integer;
CastTab : TCastArray;
sH : TVectorL3I;
H,xH,yH : TVectorL3D;
TempD1,TempD2,dMin,dMax: Double ;
x1,x2,y1,y2: Double; //等值点坐标
ARecord: PPointPair; //记录点对
//插值计算
Function xSec(p1,p2:Integer): Double;
Begin
result:= (H[p2]*xH[p1]-H[p1]*xH[p2])/(H[p2]-H[p1]);
End;
Function ySec(p1,p2:Integer): Double;
Begin
result:= (H[p2]*yH[p1]-H[p1]*yH[p2])/(H[p2]-H[p1]);
End;
begin
//分配记录等值线的数组
for i:= 0 to Length(FLevers)-1 do
if Assigned(FLevers.Points) then
FLevers.Points.Free;
SetLength(FLevers,ZCount);
for i:= 0 to ZCount-1 do
begin
FLevers.FZ:= Z;
FLevers.Points:= TList.Create;
end;
//每个三角行内出现等值点的情况映射,有27种情况
//这27种情况是根据三角形的三个顶点高程与等值点
//的大小比较得来得,每个点有三种情况:大、小、等
//0..19 为 对各种情况的处理方法,有20种
CastTab[0,0,0]:= 0; CastTab[0,0,1]:= 0; CastTab[0,0,2]:= 1;
CastTab[0,1,0]:= 0; CastTab[0,1,1]:= 2; CastTab[0,1,2]:= 3;
CastTab[0,2,0]:= 4; CastTab[0,2,1]:= 5; CastTab[0,2,2]:= 6;
CastTab[1,0,0]:= 0; CastTab[1,0,1]:= 7; CastTab[1,0,2]:= 8;
CastTab[1,1,0]:= 9; CastTab[1,1,1]:= 10; CastTab[1,1,2]:= 9;
CastTab[1,2,0]:= 8; CastTab[1,2,1]:= 7; CastTab[1,2,2]:= 0;
CastTab[2,0,0]:= 6; CastTab[2,0,1]:= 5; CastTab[2,0,2]:= 4;
CastTab[2,1,0]:= 3; CastTab[2,1,1]:= 2; CastTab[2,1,2]:= 0;
CastTab[2,2,0]:= 1; CastTab[2,2,1]:= 0; CastTab[2,2,2]:= 0;
for i:= 1 to TriangleCount do
begin
//获得三角形三个顶点中的最小值和最大值
TempD1:= min(FVertexs^[FTriangles^.vv0].Z,FVertexs^[FTriangles^.vv1].Z);
TempD2:= min(FVertexs^[FTriangles^.vv1].Z,FVertexs^[FTriangles^.vv2].Z);
dMin:= min(TempD1,TempD2);
TempD1:= max(FVertexs^[FTriangles^.vv0].Z,FVertexs^[FTriangles^.vv1].Z);
TempD2:= max(FVertexs^[FTriangles^.vv1].Z,FVertexs^[FTriangles^.vv2].Z);
dMax:= max(TempD1,TempD2);
for j:= 0 to ZCount-1 do
if (Z[j] >= dMin) And (Z[j] <= dMax) Then
begin
H[0] := FVertexs^[FTriangles^.vv0].Z-Z[j];
xH[0]:= FVertexs^[FTriangles^.vv0].X;
yH[0]:= FVertexs^[FTriangles^.vv0].Y;
H[1] := FVertexs^[FTriangles^.vv1].Z-Z[j];
xH[1]:= FVertexs^[FTriangles^.vv1].X;
yH[1]:= FVertexs^[FTriangles^.vv1].Y;
H[2] := FVertexs^[FTriangles^.vv2].Z-Z[j];
xH[2]:= FVertexs^[FTriangles^.vv2].X;
yH[2]:= FVertexs^[FTriangles^.vv2].Y;
for m:= 0 to 2 do
If H[m] > 0 Then
sH[m]:= 1
Else If H[m]<0 Then
sH[m]:= -1
Else
sH[m]:= 0;
Deside := CastTab[sH[0]+1 ,sH[1]+1, sH[2]+1];
If NOT(deside = 0) Then // 0的情况不处理
begin
Case deside Of
1: begin
x1:= xSec(0,2);
y1:= ySec(0,2);
x2:= xSec(1,2);
y2:= ySec(1,2);
end;
2: begin
x1:= xH[1];
y1:= yH[1];
x2:= xH[2];
y2:= yH[2];
end;
3: begin
x1:= xH[1];
y1:= yH[1];
x2:= xSec(0,2);
y2:= ySec(0,2);
end;
4: begin
x1:= xSec(0,1);
y1:= ySec(0,1);
x2:= xSec(1,2);
y2:= ySec(1,2);
end;
5: Begin
x1:= xH[2];
y1:= yH[2];
x2:= xSec(0,1);
y2:= ySec(0,1);
End;
6: Begin
x1:= xSec(0,1);
y1:= ySec(0,1);
x2:= xSec(0,2);
y2:= ySec(0,2);
End;
7: Begin
x1:= xH[0];
y1:= yH[0];
x2:= xH[2];
y2:= yH[2];
End;
8: Begin
x1:= xH[0];
y1:= yH[0];
x2:= xSec(1,2);
y2:= ySec(1,2);
End;
9: Begin
x1:= xH[0];
y1:= yH[0];
x2:= xH[1];
y2:= yH[1];
End;
10: begin //there is some argument here
x1:= xH[0];
y1:= yH[0];
x2:= xH[2];
y2:= yH[2];
end;
end;//----case
//此处获得该三角形内的等值点
New(ARecord);
ARecord^.x1:= x1;
ARecord^.y1:= y1;
ARecord^.x2:= x2;
ARecord^.y2:= y2;
FLevers[j].Points.Add(ARecord);
end; //if not(deside)
end;// if Z[]
end;
end;
end.