熟悉LZ压缩算法请进,倾囊相送 (200分)

  • 主题发起人 主题发起人 gisser
  • 开始时间 开始时间
G

gisser

Unregistered / Unconfirmed
GUEST, unregistred user!
以下是lz-huff compression 源代码,可以通过编译。
我想知道这个程序实现的具体思路,但是这个风格的程序看起来会把我搞疯。
如果你熟悉TC,或者对这种代码比较感兴趣,请你进行分析,并给出一套文字描述的算法,
我要用另外的数据结构来实现这种算法思想的压缩解压缩。
不胜感激,分数不多,以后可以再补给你。
[green]///////////////////////////////////////////////////////////////////////[/green]
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
FILE *infile, *outfile;
unsigned long int textsize = 0, codesize = 0, printcount = 0;
char wterr[] = "Can't write.";
void Error(char *message)
{
printf("/n%s/n", message);
exit(EXIT_FAILURE);
}
/********** LZSS compression **********/
#define N 4096 /* buffer size */
#define F 60 /* lookahead buffer size */
#define THRESHOLD 2
#define NIL N /* leaf of tree */
unsigned char
text_buf[N + F - 1];
int match_position, match_length,
lson[N + 1], rson[N + 257], dad[N + 1];
void InitTree(void) /* initialize trees */
{
int i;

for (i = N + 1;
i <= N + 256;
i++)
{
rson = NIL;
/* root */
}
for (i = 0;
i < N;
i++)
{
dad = NIL;
/* node */
}
}
void InsertNode(int r) /* insert to tree */
{
int i, p, cmp;
unsigned char *key;
unsigned c;

cmp = 1;
key = &amp;text_buf[r];
p = N + 1 + key[0];
rson[r] = lson[r] = NIL;
match_length = 0;
for ( )
{
if (cmp >= 0)
{
if (rson[p] != NIL)
{
p = rson[p];
}
else

{
rson[p] = r;
dad[r] = p;
return;
}
}
else

{
if (lson[p] != NIL)
{
p = lson[p];
}
else
{
lson[p] = r;
dad[r] = p;
return;
}
}
for (i = 1;
i < F;
i++)
{
if ((cmp = key - text_buf[p + i]) != 0)
{
break;
}
}
if (i > THRESHOLD)
{
if (i > match_length)
{
match_position = ((r - p) &amp;
(N - 1)) - 1;
if ((match_length = i) >= F)break;
}
if (i == match_length)
{
if ((c = ((r - p) &amp;
(N - 1)) - 1) < match_position)
{
match_position = c;
}
}
}
}
dad[r] = dad[p];
lson[r] = lson[p];
rson[r] = rson[p];
dad[lson[p]] = r;
dad[rson[p]] = r;
if (rson[dad[p]] == p)
{
rson[dad[p]] = r;
}
else
{
lson[dad[p]] = r;
}
dad[p] = NIL;
/* remove p */
}
void DeleteNode(int p) /* remove from tree */
{
int q;
if (dad[p] == NIL)
return;
/* not registered */
if (rson[p] == NIL)
q = lson[p];
else
if (lson[p] == NIL)
{
q = rson[p];
}
else
{
q = lson[p];
if (rson[q] != NIL)
{
do {
q = rson[q];
} while (rson[q] != NIL);
rson[dad[q]] = lson[q];
dad[lson[q]] = dad[q];
lson[q] = lson[p];
dad[lson[p]] = q;
}
rson[q] = rson[p];
dad[rson[p]] = q;
}
dad[q] = dad[p];
if (rson[dad[p]] == p)
rson[dad[p]] = q;
else
lson[dad[p]] = q;
dad[p] = NIL;
}
/* Huffman coding */
#define N_CHAR (256 - THRESHOLD + F)
/* kinds of characters (character code = 0..N_CHAR-1) */
#define T (N_CHAR * 2 - 1) /* size of table */
#define R (T - 1) /* position of root */
#define MAX_FREQ 0x8000 /* updates tree when the */
/* root frequency comes to this value. */
typedef unsigned char uchar;

/* table for encoding and decoding the upper 6 bits of position */
/* for encoding */
uchar p_len[64] = {
0x03, 0x04, 0x04, 0x04, 0x05, 0x05, 0x05, 0x05,
0x05, 0x05, 0x05, 0x05, 0x06, 0x06, 0x06, 0x06,
0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07,
0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07,
0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07,
0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08,
0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08
};
uchar p_code[64] = {
0x00, 0x20, 0x30, 0x40, 0x50, 0x58, 0x60, 0x68,
0x70, 0x78, 0x80, 0x88, 0x90, 0x94, 0x98, 0x9C,
0xA0, 0xA4, 0xA8, 0xAC, 0xB0, 0xB4, 0xB8, 0xBC,
0xC0, 0xC2, 0xC4, 0xC6, 0xC8, 0xCA, 0xCC, 0xCE,
0xD0, 0xD2, 0xD4, 0xD6, 0xD8, 0xDA, 0xDC, 0xDE,
0xE0, 0xE2, 0xE4, 0xE6, 0xE8, 0xEA, 0xEC, 0xEE,
0xF0, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7,
0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, 0xFF
};
/* for decoding */
uchar d_code[256] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03,
0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03,
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05,
0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07,
0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08,
0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A,
0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B,
0x0C, 0x0C, 0x0C, 0x0C, 0x0D, 0x0D, 0x0D, 0x0D,
0x0E, 0x0E, 0x0E, 0x0E, 0x0F, 0x0F, 0x0F, 0x0F,
0x10, 0x10, 0x10, 0x10, 0x11, 0x11, 0x11, 0x11,
0x12, 0x12, 0x12, 0x12, 0x13, 0x13, 0x13, 0x13,
0x14, 0x14, 0x14, 0x14, 0x15, 0x15, 0x15, 0x15,
0x16, 0x16, 0x16, 0x16, 0x17, 0x17, 0x17, 0x17,
0x18, 0x18, 0x19, 0x19, 0x1A, 0x1A, 0x1B, 0x1B,
0x1C, 0x1C, 0x1D, 0x1D, 0x1E, 0x1E, 0x1F, 0x1F,
0x20, 0x20, 0x21, 0x21, 0x22, 0x22, 0x23, 0x23,
0x24, 0x24, 0x25, 0x25, 0x26, 0x26, 0x27, 0x27,
0x28, 0x28, 0x29, 0x29, 0x2A, 0x2A, 0x2B, 0x2B,
0x2C, 0x2C, 0x2D, 0x2D, 0x2E, 0x2E, 0x2F, 0x2F,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F,
};
uchar d_len[256] = {
0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03,
0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03,
0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03,
0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03,
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05,
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05,
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05,
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05,
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05,
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05,
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05,
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05,
0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07,
0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07,
0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07,
0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07,
0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07,
0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07,
0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08,
0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08,
};
unsigned freq[T + 1];
/* frequency table */
int prnt[T + N_CHAR];
/* pointers to parent nodes, except for the */
/* elements [T..T + N_CHAR - 1] which are used to get */
/* the positions of leaves corresponding to the codes. */
int son[T];
/* pointers to child nodes (son[], son[] + 1) */
unsigned getbuf = 0;
uchar getlen = 0;
int GetBit(void) /* get one bit */
{
int i;

while (getlen <= 8)
{
if ((i = getc(infile)) < 0) i = 0;
getbuf |= i << (8 - getlen);
getlen += 8;
}
i = getbuf;
getbuf <<= 1;
getlen--;
return (i < 0);
}
int GetByte(void) /* get one byte */
{
unsigned i;

while (getlen <= 8)
{
if ((i = getc(infile)) < 0) i = 0;
getbuf |= i << (8 - getlen);
getlen += 8;
}
i = getbuf;
getbuf <<= 8;
getlen -= 8;
return i >> 8;
}
unsigned putbuf = 0;
uchar putlen = 0;
void Putcode(int l, unsigned c) /* output c bits of code */
{
putbuf |= c >> putlen;
if ((putlen += l) >= 8)
{
if (putc(putbuf >> 8, outfile) == EOF)
{
Error(wterr);
}
if ((putlen -= 8) >= 8)
{
if (putc(putbuf, outfile) == EOF)
{
Error(wterr);
}
codesize += 2;
putlen -= 8;
putbuf = c << (l - putlen);
}
else
{
putbuf <<= 8;
codesize++;
}
}
}
/* initialization of tree */
void StartHuff(void)
{
int i, j;

for (i = 0;
i < N_CHAR;
i++)
{
freq = 1;
son = i + T;
prnt[i + T] = i;
}
i = 0;
j = N_CHAR;
while (j <= R)
{
freq[j] = freq + freq[i + 1];
son[j] = i;
prnt = prnt[i + 1] = j;
i += 2;
j++;
}
freq[T] = 0xffff;
prnt[R] = 0;
}

/* reconstruction of tree */
void reconst(void)
{
int i, j, k;
unsigned f, l;

/* collect leaf nodes in the first half of the table */
/* and replace the freq by (freq + 1) / 2. */
j = 0;
for (i = 0;
i < T;
i++)
{
if (son >= T)
{
freq[j] = (freq + 1) / 2;
son[j] = son;
j++;
}
}
/* begin
constructing tree by connecting sons */
for (i = 0, j = N_CHAR;
j < T;
i += 2, j++)
{
k = i + 1;
f = freq[j] = freq + freq[k];
for (k = j - 1;
f < freq[k];
k--);
k++;
l = (j - k) * 2;
memmove(&amp;freq[k + 1], &amp;freq[k], l);
freq[k] = f;
memmove(&amp;son[k + 1], &amp;son[k], l);
son[k] = i;
}
/* connect prnt */
for (i = 0;
i < T;
i++)
{
if ((k = son) >= T)
{
prnt[k] = i;
}
else
{
prnt[k] = prnt[k + 1] = i;
}
}
}

/* increment frequency of given code by one, and update tree */
void update(int c)
{
int i, j, k, l;

if (freq[R] == MAX_FREQ)
{
reconst();
}
c = prnt[c + T];
do {
k = ++freq[c];

/* if the order is disturbed, exchange nodes */
if (k > freq[l = c + 1])
{
while (k > freq[++l]);
l--;
freq[c] = freq[l];
freq[l] = k;

i = son[c];
prnt = l;
if (i < T) prnt[i + 1] = l;

j = son[l];
son[l] = i;

prnt[j] = c;
if (j < T) prnt[j + 1] = c;
son[c] = j;

c = l;
}
} while ((c = prnt[c]) != 0);
/* repeat up to root */
}
unsigned code, len;
void EncodeChar(unsigned c)
{
unsigned i;
int j, k;

i = 0;
j = 0;
k = prnt[c + T];

/* travel from leaf to root */
do {
i >>= 1;

/* if node's address is odd-numbered, choose bigger brother node */
if (k &amp;
1) i += 0x8000;

j++;
}
while ((k = prnt[k]) != R);
Putcode(j, i);
code = i;
len = j;
update(c);
}
void EncodePosition(unsigned c)
{
unsigned i;

/* output upper 6 bits by table lookup */
i = c >> 6;
Putcode(p_len, (unsigned)p_code << 8);

/* output lower 6 bits verbatim */
Putcode(6, (c &amp;
0x3f) << 10);
}
void EncodeEnd(void)
{
if (putlen)
{
if (putc(putbuf >> 8, outfile) == EOF)
{
Error(wterr);
}
codesize++;
}
}
int DecodeChar(void)
{
unsigned c;

c = son[R];

/* travel from root to leaf, */
/* choosing the smaller child node (son[]) if the read bit is 0, */
/* the bigger (son[]+1} if 1 */
while (c < T)
{
c += GetBit();
c = son[c];
}
c -= T;
update(c);
return c;
}
int DecodePosition(void)
{
unsigned i, j, c;

/* recover upper 6 bits from table */
i = GetByte();
c = (unsigned)d_code << 6;
j = d_len;

/* read lower 6 bits verbatim */
j -= 2;
while (j--)
{
i = (i << 1) + GetBit();
}
return c | (i &amp;
0x3f);
}
/* compression */
void Encode(void) /* compression */
{
int i, c, len, r, s, last_match_length;

fseek(infile, 0L, 2);

//Gets the current position of a file pointer
textsize = ftell(infile);

//write the size of the infile
if (fwrite(&amp;textsize, sizeof textsize, 1, outfile) < 1)
Error(wterr);
/* output size of text */
if (textsize == 0)
return;

// Repositions the file pointer to the begin
ning of a file.
rewind(infile);
textsize = 0;

/* rewind and re-read */

StartHuff();
InitTree();
s = 0;
r = N - F;
for (i = s;
i < r;
i++)
{
text_buf = ' ';
}
for (len = 0;
len < F &amp;&amp;
(c = getc(infile)) != EOF;
len++)
{
text_buf[r + len] = c;
}

textsize = len;
for (i = 1;
i <= F;
i++)
{
InsertNode(r - i);
}
InsertNode(r);
do {
if (match_length > len)
{
match_length = len;
}
if (match_length <= THRESHOLD)
{
match_length = 1;
EncodeChar(text_buf[r]);
}
else
{
EncodeChar(255 - THRESHOLD + match_length);
EncodePosition(match_position);
}
last_match_length = match_length;
for (i = 0;
i < last_match_length &amp;&amp;
(c = getc(infile)) != EOF;
i++)
{
DeleteNode(s);
text_buf = c;
if (s < F - 1)
text_buf[s + N] = c;
s = (s + 1) &amp;
(N - 1);
r = (r + 1) &amp;
(N - 1);
InsertNode(r);
}
if ((textsize += i) > printcount)
{
printf("%12ld/r", textsize);
printcount += 1024;
}
while (i++ < last_match_length)
{
DeleteNode(s);
s = (s + 1) &amp;
(N - 1);
r = (r + 1) &amp;
(N - 1);
if (--len) InsertNode(r);
}
} while (len > 0);
EncodeEnd();
printf("In : %ld bytes/n", textsize);
printf("Out: %ld bytes/n", codesize);
printf("Out/In: %.3f/n", (double)codesize / textsize);
}
void Decode(void) /* recover */
{
int i, j, k, r, c;
unsigned long int count;

if (fread(&amp;textsize, sizeof textsize, 1, infile) < 1)
Error("Can't read");
/* read size of text */
if (textsize == 0)
return;
StartHuff();
for (i = 0;
i < N - F;
i++)
text_buf = ' ';
r = N - F;
for (count = 0;
count < textsize;
)
{
c = DecodeChar();
if (c < 256)
{
if (putc(c, outfile) == EOF)
{
Error(wterr);
}
text_buf[r++] = c;
r &amp;= (N - 1);
count++;
}
else
{
i = (r - DecodePosition() - 1) &amp;
(N - 1);
j = c - 255 + THRESHOLD;
for (k = 0;
k < j;
k++)
{
c = text_buf[(i + k) &amp;
(N - 1)];
if (putc(c, outfile) == EOF)
{
Error(wterr);
}
text_buf[r++] = c;
r &amp;= (N - 1);
count++;
}
}
if (count > printcount)
{
printf("%12ld/r", count);
printcount += 1024;
}
}
printf("%12ld/n", count);
}
int main(int argc, char *argv[])
{
char *s;

if (argc != 4)
{
printf("'lzhuf e file1 file2' encodes file1 into file2./n" "'lzhuf d file2 file1' decodes file2 into file1./n");
return EXIT_FAILURE;
}
if ( (s = argv[1], s[1] || strpbrk(s, "DEde") == NULL)||
(s = argv[2], (infile = fopen(s, "rb")) == NULL)||
(s = argv[3], (outfile = fopen(s, "wb")) == NULL) )
{
printf("??? %s/n", s);
return EXIT_FAILURE;
}
if (toupper(*argv[1]) == 'E')
Encode();
else
Decode();
fclose(infile);
fclose(outfile);
return EXIT_SUCCESS;
}
 
主要是要分析出,这种方法与传统的LZ算法不一样的地方,我没时间去看了
 
后退
顶部